Source code for topostats.tracing.ordered_tracing

"""Order single pixel skeletons with or without NodeStats Statistics."""

from __future__ import annotations

import logging
from itertools import combinations

import numpy as np
import numpy.typing as npt
import pandas as pd
from skimage.morphology import binary_dilation, label
from topoly import jones, translate_code

from topostats.logs.logs import LOGGER_NAME
from topostats.tracing.tracingfuncs import coord_dist, genTracingFuncs, order_branch, reorderTrace
from topostats.utils import convolve_skeleton, coords_2_img

LOGGER = logging.getLogger(LOGGER_NAME)


[docs] class OrderedTraceNodestats: # pylint: disable=too-many-instance-attributes """ Order single pixel thick skeleton coordinates via NodeStats results. Parameters ---------- image : npt.NDArray A cropped image array. nodestats_dict : dict The nodestats results for a specific grain. skeleton : npt.NDArray The pruned skeleton mask array. filename : str The image filename (for logging purposes). """ def __init__( self, image: npt.NDArray, nodestats_dict: dict, skeleton: npt.NDArray, filename: str, ) -> None: """ Initialise the OrderedTraceNodestats class. Parameters ---------- image : npt.NDArray A cropped image array. nodestats_dict : dict The nodestats results for a specific grain. skeleton : npt.NDArray The pruned skeleton mask array. filename : str The image filename (for logging purposes). """ self.image = image self.nodestats_dict = nodestats_dict self.filename = filename self.skeleton = skeleton self.grain_tracing_stats = { "num_mols": 0, "circular": None, } self.mol_tracing_stats = {"circular": None, "topology": None, "topology_flip": None, "processing": "nodestats"} self.images = { "over_under": np.zeros_like(image), "all_molecules": np.zeros_like(image), "ordered_traces": np.zeros_like(image), "trace_segments": np.zeros_like(image), } self.profiles = {} self.img_idx_to_node = {} self.ordered_coordinates = [] # pylint: disable=too-many-locals # pylint: disable=too-many-branches
[docs] def compile_trace(self, reverse_min_conf_crossing: bool = False) -> tuple[list, npt.NDArray]: # noqa: C901 """ Obtain the trace and diagnostic crossing trace and molecule trace images. This function uses the branches and full-width half-maximums (FWHMs) identified in the node_stats dictionary to create a continuous trace of the molecule. Parameters ---------- reverse_min_conf_crossing : bool Whether to reverse the stacking order of the lowest confidence crossing in the trace. Returns ------- tuple[list, npt.NDArray] A list of each complete path's ordered coordinates, and labeled crossing image array. """ # iterate through the dict to get branch coords, heights and fwhms node_coords = [ [stats["node_coords"] for branch_stats in stats["branch_stats"].values() if branch_stats["fwhm"]["fwhm"]] for stats in self.nodestats_dict.values() ] node_coords = [lst for lst in node_coords if lst] crossing_coords = [ [ branch_stats["ordered_coords"] for branch_stats in stats["branch_stats"].values() if branch_stats["fwhm"]["fwhm"] ] for stats in self.nodestats_dict.values() ] crossing_coords = [lst for lst in crossing_coords if lst] fwhms = [ [ branch_stats["fwhm"]["fwhm"] for branch_stats in stats["branch_stats"].values() if branch_stats["fwhm"]["fwhm"] ] for stats in self.nodestats_dict.values() ] fwhms = [lst for lst in fwhms if lst] confidences = [stats["confidence"] for stats in self.nodestats_dict.values()] # obtain the index of the underlying branch try: low_conf_idx = np.nanargmin(np.array(confidences, dtype=float)) except ValueError: # when no crossings or only 3-branch crossings low_conf_idx = None # Get the image minus the crossing regions nodes = np.zeros_like(self.skeleton) for node_no in node_coords: # this stops unpaired branches from interacting with the pairs nodes[node_no[0][:, 0], node_no[0][:, 1]] = 1 minus = np.where(binary_dilation(binary_dilation(nodes)) == self.skeleton, 0, self.skeleton) # remove crossings from skeleton for crossings in crossing_coords: for crossing in crossings: minus[crossing[:, 0], crossing[:, 1]] = 0 minus = label(minus) # setup z array z = [] # order minus segments ordered = [] for non_cross_segment_idx in range(1, minus.max() + 1): arr = np.where(minus, minus == non_cross_segment_idx, 0) ordered.append(order_branch(arr, [0, 0])) # orientated later z.append(0) self.img_idx_to_node[non_cross_segment_idx] = {} # add crossing coords to ordered segment list uneven_count = non_cross_segment_idx + 1 for node_num, node_crossing_coords in enumerate(crossing_coords): z_idx = np.argsort(fwhms[node_num]) z_idx[z_idx == 0] = -1 if reverse_min_conf_crossing and low_conf_idx == node_num: z_idx = z_idx[::-1] fwhms[node_num] = fwhms[node_num][::-1] for node_cross_idx, single_cross in enumerate(node_crossing_coords): # check current single cross has no duplicate coords with ordered, except crossing points uncommon_single_cross = np.array(single_cross).copy() for coords in ordered: uncommon_single_cross = self.remove_common_values( uncommon_single_cross, np.array(coords), retain=node_coords[node_num][node_cross_idx] ) if len(uncommon_single_cross) > 0: ordered.append(uncommon_single_cross) z.append(z_idx[node_cross_idx]) self.img_idx_to_node[uneven_count + node_cross_idx] = { "node_idx": node_num, "coords": single_cross, "z_idx": z_idx[node_cross_idx], } uneven_count += len(node_crossing_coords) # get an image of each ordered segment cross_add = np.zeros_like(self.image) for i, coords in enumerate(ordered): single_cross_img = coords_2_img(np.array(coords), cross_add) cross_add[single_cross_img != 0] = i + 1 coord_trace, simple_trace = self.trace(ordered, cross_add, z, n=100) # obtain topology from the simple trace topology = self.get_topology(simple_trace) if reverse_min_conf_crossing and low_conf_idx is None: # when there's nothing to reverse topology = [None for _ in enumerate(topology)] return coord_trace, topology, cross_add, crossing_coords, fwhms
[docs] def compile_images(self, coord_trace: list, cross_add: npt.NDArray, crossing_coords: list, fwhms: list) -> None: """ Obtain all the diagnostic images based on the produced traces, and values. Crossing coords and fwhms are used as arguments as reversing the minimum confidence can modify these. Parameters ---------- coord_trace : list List of N molecule objects containing 2xM arrays of X, Y coordinates. cross_add : npt.NDArray A labelled array with segments of the ordered trace. crossing_coords : list A list of I nodes objects containing 2xJ arrays of X, Y coordinates for each crossing branch. fwhms : list A list of I nodes objects containing FWHM values for each crossing branch. """ # visual over under img self.images["trace_segments"] = cross_add try: self.images["over_under"] = self.get_over_under_img(coord_trace, fwhms, crossing_coords) self.images["all_molecules"] = self.get_mols_img(coord_trace, fwhms, crossing_coords) except IndexError: pass self.images["ordered_traces"] = ordered_trace_mask(coord_trace, self.image.shape)
[docs] @staticmethod def remove_common_values( ordered_array: npt.NDArray, common_value_check_array: npt.NDArray, retain: list = () ) -> np.array: """ Remove common values in common_value_check_array from ordered_array while retaining specified coordinates. Parameters ---------- ordered_array : npt.NDArray Coordinate array to remove / retain values from. Will retain its order. common_value_check_array : npt.NDArray Coordinate array containing any common values to be removed from ordered_array. retain : list, optional List of possible coordinates to keep, by default (). Returns ------- np.array Unique ordered_array values and retained coordinates. Retains the order of ordered_array. """ # Convert the arrays to sets for faster common value lookup set_arr2 = {tuple(row) for row in common_value_check_array} set_retain = {tuple(row) for row in retain} # Create a new filtered list while maintaining the order of the first array filtered_arr1 = [] for coord in ordered_array: tup_coord = tuple(coord) if tup_coord not in set_arr2 or tup_coord in set_retain: filtered_arr1.append(coord) return np.asarray(filtered_arr1)
[docs] def get_topology(self, nxyz: npt.NDArray) -> list: """ Obtain a topological classification from ordered XYZ coordinates. Parameters ---------- nxyz : npt.NDArray A 4xN array of the order index (n), x, y and pseudo z coordinates. Returns ------- list Topology(s) of the provided traced coordinates. """ # Topoly doesn't work when 2 mols don't actually cross topology = [] lin_idxs = [] nxyz_cp = nxyz.copy() # remove linear mols as are just reidmiester moves for i, mol_trace in enumerate(nxyz): if mol_trace[-1][0] != 0: # mol is not circular topology.append("linear") lin_idxs.append(i) # remove from list in reverse order so no conflicts lin_idxs.sort(reverse=True) for i in lin_idxs: del nxyz_cp[i] # classify topology for non-reidmeister moves if len(nxyz_cp) != 0: try: pd_code = translate_code( nxyz_cp, output_type="pdcode" ) # pd code helps prevents freezing and spawning multiple processes LOGGER.debug(f"{self.filename} : PD Code is: {pd_code}") top_class = jones(pd_code) except (IndexError, KeyError): LOGGER.debug(f"{self.filename} : PD Code could not be obtained from trace coordinates.") top_class = "N/A" # don't separate catenanes / overlaps - used for distribution comparison for _ in range(len(nxyz_cp)): topology.append(top_class) return topology
[docs] def trace(self, ordered_segment_coords: list, both_img: npt.NDArray, zs: npt.NDArray, n: int = 100) -> list: # pylint: disable=too-many-locals """ Obtain an ordered trace of each complete path. Here a 'complete path' means following and removing connected segments until there are no more segments to follow. Parameters ---------- ordered_segment_coords : list Ordered coordinates of each labeled segment in 'both_img'. both_img : npt.NDArray A skeletonised labeled image of each path segment. zs : npt.NDArray Array of pseudo heights of the traces. -1 is lowest, 0 is skeleton, then ascending integers for levels of overs. n : int The number of points to use for the simplified traces. Returns ------- list Ordered trace coordinates of each complete path. """ mol_coords = [] simple_coords = [] remaining = both_img.copy().astype(np.int32) endpoints = np.unique(remaining[convolve_skeleton(remaining.astype(bool)) == 2]) # unique in case of whole mol prev_segment = None n_points_p_seg = ( 2 if ((n - 2 * remaining.max()) // remaining.max()) < 2 else (n - 2 * remaining.max()) // remaining.max() ) while remaining.max() != 0: # select endpoint to start if there is one endpoints = [i for i in endpoints if i in np.unique(remaining)] # remove if removed from remaining if endpoints: coord_idx = endpoints.pop(0) - 1 else: # if no endpoints, just a loop coord_idx = np.unique(remaining)[1] - 1 # avoid choosing 0 coord_trace = np.empty((0, 3)).astype(np.int32) simple_trace = np.empty((0, 3)).astype(np.int32) while coord_idx > -1: # either cycled through all or hits terminus -> all will be just background remaining[remaining == coord_idx + 1] = 0 trace_segment = self.get_trace_segment(remaining, ordered_segment_coords, coord_idx) full_trace_segment = trace_segment.copy() if len(coord_trace) > 0: # can only order when there's a reference point / segment trace_segment = self.remove_common_values( trace_segment, prev_segment ) # remove overlaps in trace (may be more efficient to do it on the previous segment) trace_segment, flipped = self.order_from_end(coord_trace[-1, :2], trace_segment) full_trace_segment = full_trace_segment[::-1] if flipped else full_trace_segment # get vector if crossing if self.img_idx_to_node[coord_idx + 1]: segment_vector = full_trace_segment[-1] - full_trace_segment.mean( axis=0 ) # from start to mean coord segment_vector /= np.sqrt(segment_vector @ segment_vector) # normalise self.img_idx_to_node[coord_idx + 1]["vector"] = segment_vector prev_segment = trace_segment.copy() # update previous segment trace_segment_z = np.column_stack( (trace_segment, np.ones((len(trace_segment), 1)) * zs[coord_idx]) ).astype( np.int32 ) # add z's coord_trace = np.append(coord_trace, trace_segment_z.astype(np.int32), axis=0) # obtain a reduced coord version of the traces for Topoly simple_trace_temp = self.reduce_rows( trace_segment.astype(np.int32), n=n_points_p_seg ) # reducing rows here ensures no segments are skipped simple_trace_temp_z = np.column_stack( (simple_trace_temp, np.ones((len(simple_trace_temp), 1)) * zs[coord_idx]) ).astype( np.int32 ) # add z's simple_trace = np.append(simple_trace, simple_trace_temp_z, axis=0) x, y = coord_trace[-1, :2] coord_idx = remaining[x - 1 : x + 2, y - 1 : y + 2].max() - 1 # should only be one value mol_coords.append(coord_trace) # Issue in 0_5 where wrong nxyz[0] selected, and == nxyz[-1] so always duplicated nxyz = np.column_stack((np.arange(0, len(simple_trace)), simple_trace)) end_to_end_dist_squared = (nxyz[0][1] - nxyz[-1][1]) ** 2 + (nxyz[0][2] - nxyz[-1][2]) ** 2 if len(nxyz) > 2 and end_to_end_dist_squared <= 2: # pylint: disable=chained-comparison # single coord traces mean nxyz[0]==[1] so cause issues when duplicating for topoly nxyz = np.append(nxyz, nxyz[0][np.newaxis, :], axis=0) simple_coords.append(nxyz) # convert into lists for Topoly simple_coords = [[list(row) for row in mol] for mol in simple_coords] return mol_coords, simple_coords
[docs] @staticmethod def reduce_rows(array: npt.NDArray, n: int = 300) -> npt.NDArray: """ Reduce the number of rows in the array to `n`, keeping the first and last indexes. Parameters ---------- array : npt.NDArray An array to reduce the number of rows in. n : int, optional The number of indexes in the array to keep, by default 300. Returns ------- npt.NDArray The `array` reduced to only `n` + 2 elements, or if shorter, the same array. """ # removes reduces the number of rows (but keeping the first and last ones) if array.shape[0] < n or array.shape[0] < 4: return array idxs_to_keep = np.unique(np.linspace(0, array[1:-1].shape[0] - 1, n).astype(np.int32)) new_array = array[1:-1][idxs_to_keep] new_array = np.append(array[0][np.newaxis, :], new_array, axis=0) return np.append(new_array, array[-1][np.newaxis, :], axis=0)
[docs] @staticmethod def get_trace_segment(remaining_img: npt.NDArray, ordered_segment_coords: list, coord_idx: int) -> npt.NDArray: """ Return an ordered segment at the end of the current one. Check the branch of given index to see if it contains an endpoint. If it does, the segment coordinates will be returned starting from the endpoint. Parameters ---------- remaining_img : npt.NDArray A 2D array representing an image composed of connected segments of different integers. ordered_segment_coords : list A list of 2xN coordinates representing each segment. coord_idx : int The index of the current segment to look at. There is an index mismatch between the remaining_img and ordered_segment_coords by -1. Returns ------- npt.NDArray 2xN array of coordinates representing a skeletonised ordered trace segment. """ start_xy = ordered_segment_coords[coord_idx][0] start_max = remaining_img[start_xy[0] - 1 : start_xy[0] + 2, start_xy[1] - 1 : start_xy[1] + 2].max() - 1 if start_max == -1: return ordered_segment_coords[coord_idx] # start is endpoint return ordered_segment_coords[coord_idx][::-1] # end is endpoint
[docs] @staticmethod def order_from_end(last_segment_coord: npt.NDArray, current_segment: npt.NDArray) -> npt.NDArray: """ Order the current segment to follow from the end of the previous one. Parameters ---------- last_segment_coord : npt.NDArray X and Y coordinates of the end of the last segment. current_segment : npt.NDArray A 2xN array of coordinates of the current segment to order. Returns ------- npt.NDArray The current segment orientated to follow on from the last. bool Whether the order has been flipped. """ start_xy = current_segment[0] dist = np.sum((start_xy - last_segment_coord) ** 2) ** 0.5 if dist <= np.sqrt(2): return current_segment, False return current_segment[::-1], True
[docs] def get_over_under_img(self, coord_trace: list, fwhms: list, crossing_coords: list) -> npt.NDArray: """ Obtain a labelled image according to the main trace (=1), under (=2), over (=3). Parameters ---------- coord_trace : list Ordered coordinate trace of each molecule. fwhms : list List of full-width half-maximums (FWHMs) for each crossing in the trace. crossing_coords : list The crossing coordinates of each branch crossing. Returns ------- npt.NDArray 2D crossing order labelled image. """ # put down traces img = np.zeros_like(self.skeleton) for coords in coord_trace: temp_img = np.zeros_like(img) temp_img[coords[:, 0], coords[:, 1]] = 1 # temp_img = binary_dilation(temp_img) img[temp_img != 0] = 1 # place over/under strands onto image array lower_idxs, upper_idxs = self.get_trace_idxs(fwhms) for i, type_idxs in enumerate([lower_idxs, upper_idxs]): for crossing, type_idx in zip(crossing_coords, type_idxs): temp_img = np.zeros_like(img) cross_coords = crossing[type_idx] temp_img[cross_coords[:, 0], cross_coords[:, 1]] = 1 # temp_img = binary_dilation(temp_img) img[temp_img != 0] = i + 2 return img
# pylint: disable=too-many-locals
[docs] def get_mols_img(self, coord_trace: list, fwhms: list, crossing_coords: list) -> npt.NDArray: # pylint: disable=too-many-locals """ Obtain a labelled image according to each molecule traced N=3 -> n=1,2,3. Parameters ---------- coord_trace : list Ordered coordinate trace of each molecule. fwhms : list List of full-width half-maximums (FWHMs) for each crossing in the trace. crossing_coords : list The crossing coordinates of each branch crossing. Returns ------- npt.NDArray 2D individual 'molecule' labelled image. """ img = np.zeros_like(self.skeleton) for mol_no, coords in enumerate(coord_trace): temp_img = np.zeros_like(img) temp_img[coords[:, 0], coords[:, 1]] = 1 img[temp_img != 0] = mol_no + 1 lower_idxs, upper_idxs = self.get_trace_idxs(fwhms) # plot separate mols for type_idxs in [lower_idxs, upper_idxs]: for node_crossing_coords, type_idx in zip(crossing_coords, type_idxs): temp_img = np.zeros_like(img) cross_coords = node_crossing_coords[type_idx] # decide which val matching_coords = np.array([]) for trace in coord_trace: c = 0 # get overlaps between segment coords and crossing under coords for cross_coord in cross_coords: c += ((trace[:, :2] == cross_coord).sum(axis=1) == 2).sum() matching_coords = np.append(matching_coords, c) val = matching_coords.argmax() + 1 temp_img[cross_coords[:, 0], cross_coords[:, 1]] = 1 img[temp_img != 0] = val return img
[docs] @staticmethod def get_trace_idxs(fwhms: list) -> tuple[list, list]: """ Split under-passing and over-passing indices. Parameters ---------- fwhms : list List of arrays of full-width half-maximum (FWHM) values for each crossing point. Returns ------- tuple[list, list] All the under, and over indices of the for each node FWHMs in the provided FWHM list. """ # node fwhms can be a list of different lengths so cannot use np arrays under_idxs = [] over_idxs = [] for node_fwhms in fwhms: order = np.argsort(node_fwhms) under_idxs.append(order[0]) over_idxs.append(order[-1]) return under_idxs, over_idxs
[docs] def check_node_errorless(self) -> bool: """ Check if an error has occurred while processing the node dictionary. Returns ------- bool Whether the error is present. """ for vals in self.nodestats_dict.values(): if vals["error"]: return False return True
[docs] def identify_writhes(self) -> str | dict: """ Identify the writhe topology at each crossing in the image. Returns ------- str | dict A string of the whole grain writhe sign, and a dictionary linking each node to it's sign. """ # compile all vectors for each node and their z_idx # - want for each node, ordered vectors according to z_idx writhe_string = "" node_to_writhe = {} idx2node_df = pd.DataFrame.from_dict(self.img_idx_to_node, orient="index") if idx2node_df.empty: # for when no crossovers but still crossings (i.e. unpaired 3-way) return "", {} for node_num, node_df in idx2node_df.groupby("node_idx"): vector_series = node_df.sort_values(by=["z_idx"], ascending=False)["vector"] vectors = list(vector_series) # get pairs vector_combinations = list(combinations(vectors, 2)) # calculate the writhe temp_writhes = "" for vector_pair in vector_combinations: # if > 2 crossing branches temp_writhes += self.writhe_direction(vector_pair[0], vector_pair[1]) if len(temp_writhes) > 1: temp_writhes = f"({temp_writhes})" node_to_writhe[node_num] = temp_writhes writhe_string += temp_writhes return writhe_string, node_to_writhe
[docs] @staticmethod def writhe_direction(first_vector: npt.NDArray, second_vector: npt.NDArray) -> str: """ Use the cross product of crossing vectors to determine the writhe sign. Parameters ---------- first_vector : npt.NDArray An x,y component vector of the overlying strand. second_vector : npt.NDArray An x,y component vector of the underlying strand. Returns ------- str '+', '-' or '0' for positive, negative, or no writhe. """ cross = np.cross(first_vector, second_vector) if cross < 0: return "-" if cross > 0: return "+" return "0"
[docs] def run_nodestats_tracing(self) -> tuple[list, dict, dict]: """ Run the nodestats tracing pipeline. Returns ------- tuple[list, dict, dict] A list of each molecules ordered trace coordinates, the ordered_tracing stats, and the images. """ ordered_traces, topology, cross_add, crossing_coords, fwhms = self.compile_trace( reverse_min_conf_crossing=False ) self.compile_images(ordered_traces, cross_add, crossing_coords, fwhms) self.grain_tracing_stats["num_mols"] = len(ordered_traces) writhe_string, node_to_writhes = self.identify_writhes() self.grain_tracing_stats["writhe_string"] = writhe_string for node_num, node_writhes in node_to_writhes.items(): # should self update as the dicts are linked self.nodestats_dict[f"node_{node_num+1}"]["writhe"] = node_writhes topology_flip = self.compile_trace(reverse_min_conf_crossing=True)[1] ordered_trace_data = {} grain_mol_tracing_stats = {} for i, mol_trace in enumerate(ordered_traces): if len(mol_trace) > 3: # if > 4 coords to trace self.mol_tracing_stats["circular"] = linear_or_circular(mol_trace[:, :2]) self.mol_tracing_stats["topology"] = topology[i] self.mol_tracing_stats["topology_flip"] = topology_flip[i] ordered_trace_data[f"mol_{i}"] = { "ordered_coords": mol_trace[:, :2], "heights": self.image[mol_trace[:, 0], mol_trace[:, 1]], "distances": coord_dist(mol_trace[:, :2]), "mol_stats": self.mol_tracing_stats, } grain_mol_tracing_stats[f"{i}"] = self.mol_tracing_stats return ordered_trace_data, self.grain_tracing_stats, grain_mol_tracing_stats, self.images
[docs] class OrderedTraceTopostats: """ Order single pixel thick skeleton coordinates via TopoStats. Parameters ---------- image : npt.NDArray A cropped image array. skeleton : npt.NDArray The pruned skeleton mask array. """ def __init__( self, image, skeleton, ) -> None: """ Initialise the OrderedTraceTopostats class. Parameters ---------- image : npt.NDArray A cropped image array. skeleton : npt.NDArray The pruned skeleton mask array. """ self.image = image self.skeleton = skeleton self.grain_tracing_stats = { "num_mols": 1, "circular": None, } self.mol_tracing_stats = {"circular": None, "topology": None, "topology_flip": None, "processing": "topostats"} self.images = { "ordered_traces": np.zeros_like(image), "all_molecules": skeleton.copy(), "over_under": skeleton.copy(), "trace_segments": skeleton.copy(), }
[docs] @staticmethod def get_ordered_traces(disordered_trace_coords: npt.NDArray, mol_is_circular: bool) -> list: """ Obtain ordered traces from disordered traces. Parameters ---------- disordered_trace_coords : npt.NDArray A Nx2 array of coordinates to order. mol_is_circular : bool A flag of whether the molecule has at least one coordinate with only one neighbour. Returns ------- list A list of each molecules ordered trace coordinates. """ if mol_is_circular: ordered_trace, trace_completed = reorderTrace.circularTrace(disordered_trace_coords) if not trace_completed: mol_is_circular = False try: ordered_trace = reorderTrace.linearTrace(ordered_trace) except UnboundLocalError: pass elif not mol_is_circular: ordered_trace = reorderTrace.linearTrace(disordered_trace_coords) return [ordered_trace]
[docs] def run_topostats_tracing(self) -> tuple[list, dict, dict]: """ Run the topostats tracing pipeline. Returns ------- tuple[list, dict, dict] A list of each molecules ordered trace coordinates, the ordered_traicing stats, and the images. """ disordered_trace_coords = np.argwhere(self.skeleton == 1) self.mol_tracing_stats["circular"] = linear_or_circular(disordered_trace_coords) self.mol_tracing_stats["topology"] = "0_1" if self.mol_tracing_stats["circular"] else "linear" ordered_trace = self.get_ordered_traces(disordered_trace_coords, self.mol_tracing_stats["circular"]) self.images["ordered_traces"] = ordered_trace_mask(ordered_trace, self.image.shape) ordered_trace_data = {} for i, mol_trace in enumerate(ordered_trace): ordered_trace_data[f"mol_{i}"] = { "ordered_coords": mol_trace, "heights": self.image[ordered_trace[0][:, 0], ordered_trace[0][:, 1]], "distances": coord_dist(ordered_trace[0]), "mol_stats": self.mol_tracing_stats, } return ordered_trace_data, self.grain_tracing_stats, {"0": self.mol_tracing_stats}, self.images
[docs] def linear_or_circular(traces) -> bool: """ Determine whether the molecule is circular or linear via >1 points in the local start area. This function is sensitive to branches from the skeleton because it is based on whether any given point has zero neighbours or not so the traces should be pruned. Parameters ---------- traces : npt.NDArray The array of coordinates to be assessed. Returns ------- bool Whether a molecule is linear or not (True if linear, False otherwise). """ points_with_one_neighbour = 0 fitted_trace_list = traces.tolist() # For loop determines how many neighbours a point has - if only one it is an end for x, y in fitted_trace_list: if genTracingFuncs.count_and_get_neighbours(x, y, fitted_trace_list)[0] == 1: points_with_one_neighbour += 1 else: pass if points_with_one_neighbour == 0: return True return False
[docs] def ordered_trace_mask(ordered_coordinates: npt.NDArray, shape: tuple) -> npt.NDArray: """ Obtain a mask of the trace coordinates with each trace pixel. Parameters ---------- ordered_coordinates : npt.NDArray Ordered array of coordinates. shape : tuple The shape of the array bounding the coordinates. Returns ------- npt.NDArray NxM image with each pixel in the ordered trace labeled in ascending order. """ ordered_mask = np.zeros(shape) if isinstance(ordered_coordinates, list): for mol_coords in ordered_coordinates: ordered_mask[mol_coords[:, 0], mol_coords[:, 1]] = np.arange(len(mol_coords)) + 1 return ordered_mask
# pylint: disable=too-many-locals
[docs] def ordered_tracing_image( image: npt.NDArray, disordered_tracing_direction_data: dict, nodestats_direction_data: dict, filename: str, ordering_method: str, pad_width: int, ) -> tuple[dict, pd.DataFrame, pd.DataFrame, dict]: # pylint: disable=too-many-locals """ Run ordered tracing for an entire image of >=1 grains. Parameters ---------- image : npt.NDArray Whole FOV image. disordered_tracing_direction_data : dict Dictionary result from the disordered traces. Fields used are "original_image" and "pruned_skeleton". nodestats_direction_data : dict Dictionary result from the nodestats analysis. filename : str Image filename (for logging purposes). ordering_method : str The method to order the trace coordinates - "topostats" or "nodestats". pad_width : int Width to pad the images by. Returns ------- tuple[dict, pd.DataFrame, pd.DataFrame, dict] Results containing the ordered_trace_data (coordinates), any grain-level metrics to be added to the grains dataframe, a dataframe of molecule statistics and a dictionary of diagnostic images. """ ordered_trace_full_images = { "ordered_traces": np.zeros_like(image), "all_molecules": np.zeros_like(image), "over_under": np.zeros_like(image), "trace_segments": np.zeros_like(image), } grainstats_additions = {} molstats = {} all_traces_data = {} LOGGER.info( f"[{filename}] : Calculating Ordered Traces and statistics for " f"{len(disordered_tracing_direction_data)} grains..." ) # iterate through disordered_tracing_dict for grain_no, disordered_trace_data in disordered_tracing_direction_data.items(): try: # check if want to do nodestats tracing or not if grain_no in list(nodestats_direction_data["stats"].keys()) and ordering_method == "nodestats": LOGGER.debug(f"[{filename}] : Grain {grain_no} present in NodeStats. Tracing via Nodestats.") nodestats_tracing = OrderedTraceNodestats( image=nodestats_direction_data["images"][grain_no]["grain"]["grain_image"], filename=filename, nodestats_dict=nodestats_direction_data["stats"][grain_no], skeleton=nodestats_direction_data["images"][grain_no]["grain"]["grain_skeleton"], ) if nodestats_tracing.check_node_errorless(): ordered_traces_data, tracing_stats, grain_molstats, images = ( nodestats_tracing.run_nodestats_tracing() ) LOGGER.debug(f"[{filename}] : Grain {grain_no} ordered via NodeStats.") else: LOGGER.debug(f"Nodestats dict has an error ({nodestats_direction_data['stats'][grain_no]['error']}") # if not doing nodestats ordering, do original TS ordering else: LOGGER.debug(f"[{filename}] : {grain_no} not in NodeStats. Tracing normally.") topostats_tracing = OrderedTraceTopostats( image=disordered_trace_data["original_image"], skeleton=disordered_trace_data["pruned_skeleton"], ) ordered_traces_data, tracing_stats, grain_molstats, images = topostats_tracing.run_topostats_tracing() LOGGER.debug(f"[{filename}] : Grain {grain_no} ordered via TopoStats.") # compile traces all_traces_data[grain_no] = ordered_traces_data for mol_no, _ in ordered_traces_data.items(): all_traces_data[grain_no][mol_no].update({"bbox": disordered_trace_data["bbox"]}) # compile metrics grainstats_additions[grain_no] = { "image": filename, "grain_number": int(grain_no.split("_")[-1]), } tracing_stats.pop("circular") grainstats_additions[grain_no].update(tracing_stats) # compile molecule metrics for mol_no, molstat_values in grain_molstats.items(): molstats[f"{grain_no.split('_')[-1]}_{mol_no}"] = { "image": filename, "grain_number": int(grain_no.split("_")[-1]), "molecule_number": int(mol_no.split("_")[-1]), # pylint: disable=use-maxsplit-arg } molstats[f"{grain_no.split('_')[-1]}_{mol_no}"].update(molstat_values) # remap the cropped images back onto the original for image_name, full_image in ordered_trace_full_images.items(): crop = images[image_name] bbox = disordered_trace_data["bbox"] full_image[bbox[0] : bbox[2], bbox[1] : bbox[3]] += crop[pad_width:-pad_width, pad_width:-pad_width] except Exception as e: # pylint: disable=broad-exception-caught LOGGER.error( f"[{filename}] : Ordered tracing for {grain_no} failed. Consider raising an issue on GitHub. Error: ", exc_info=e, ) all_traces_data[grain_no] = {} grainstats_additions_df = pd.DataFrame.from_dict(grainstats_additions, orient="index") molstats_df = pd.DataFrame.from_dict(molstats, orient="index") molstats_df.reset_index(drop=True, inplace=True) return all_traces_data, grainstats_additions_df, molstats_df, ordered_trace_full_images