topostats.grains#
Find grains in an image.
Attributes#
Classes#
Find grains in an image. |
Module Contents#
- topostats.grains.LOGGER#
- class topostats.grains.Grains(image: numpy.typing.NDArray, filename: str, pixel_to_nm_scaling: float, unet_config: dict[str, str | int | float | tuple[int | None, int, int, int] | None] | None = None, threshold_method: str | None = None, otsu_threshold_multiplier: float | None = None, threshold_std_dev: dict | None = None, threshold_absolute: dict | None = None, absolute_area_threshold: dict | None = None, direction: str | None = None, smallest_grain_size_nm2: float | None = None, remove_edge_intersecting_grains: bool = True)#
Find grains in an image.
- Parameters:
image (npt.NDArray) – 2-D Numpy array of image.
filename (str) – File being processed (used in logging).
pixel_to_nm_scaling (float) – Scaling of pixels to nanometres.
unet_config (dict[str, str | int | float | tuple[int | None, int, int, int] | None]) –
Configuration for the UNet model. model_path: str
Path to the UNet model.
- grain_crop_padding: int
Padding to add to the bounding box of the grain before cropping.
- upper_norm_bound: float
Upper bound for normalising the image.
- lower_norm_bound: float
Lower bound for normalising the image.
threshold_method (str) – Method for determining thershold to mask values, default is ‘otsu’.
otsu_threshold_multiplier (float) – Factor by which the below threshold is to be scaled prior to masking.
threshold_std_dev (dict) – Dictionary of ‘below’ and ‘above’ factors by which standard deviation is multiplied to derive the threshold if threshold_method is ‘std_dev’.
threshold_absolute (dict) – Dictionary of absolute ‘below’ and ‘above’ thresholds for grain finding.
absolute_area_threshold (dict) – Dictionary of above and below grain’s area thresholds.
direction (str) – Direction for which grains are to be detected, valid values are ‘above’, ‘below’ and ‘both’.
smallest_grain_size_nm2 (float) – Whether or not to remove grains that intersect the edge of the image.
remove_edge_intersecting_grains (bool) – Direction for which grains are to be detected, valid values are ‘above’, ‘below’ and ‘both’.
- image#
- filename#
- pixel_to_nm_scaling#
- threshold_method#
- otsu_threshold_multiplier#
- threshold_std_dev#
- threshold_absolute#
- absolute_area_threshold#
- direction#
- smallest_grain_size_nm2#
- remove_edge_intersecting_grains#
- thresholds = None#
- images#
- directions#
- minimum_grain_size = None#
- region_properties#
- bounding_boxes#
- grainstats = None#
- unet_config#
- tidy_border(image: numpy.typing.NDArray, **kwargs) numpy.typing.NDArray #
Remove grains touching the border.
- Parameters:
image (npt.NDarray) – 2-D Numpy array representing the image.
**kwargs – Arguments passed to ‘skimage.segmentation.clear_border(**kwargs)’.
- Returns:
2-D Numpy array of image without objects touching the border.
- Return type:
npt.NDarray
- static label_regions(image: numpy.typing.NDArray, background: int = 0) numpy.typing.NDArray #
Label regions.
This method is used twice, once prior to removal of small regions and again afterwards which is why an image must be supplied rather than using ‘self’.
- Parameters:
image (npt.NDArray) – 2-D Numpy array of image.
background (int) – Value used to indicate background of image. Default = 0.
- Returns:
2-D Numpy array of image with regions numbered.
- Return type:
npt.NDArray
- calc_minimum_grain_size(image: numpy.typing.NDArray) float #
Calculate the minimum grain size in pixels squared.
Very small objects are first removed via thresholding before calculating the below extreme.
- Parameters:
image (npt.NDArray) – 2-D Numpy image from which to calculate the minimum grain size.
- Returns:
Minimum grains size in pixels squared. If there are areas a value of -1 is returned.
- Return type:
float
- remove_noise(image: numpy.typing.NDArray, **kwargs) numpy.typing.NDArray #
Remove noise which are objects smaller than the ‘smallest_grain_size_nm2’.
This ensures that the smallest objects ~1px are removed regardless of the size distribution of the grains.
- Parameters:
image (npt.NDArray) – 2-D Numpy array to be cleaned.
**kwargs – Arguments passed to ‘skimage.morphology.remove_small_objects(**kwargs)’.
- Returns:
2-D Numpy array of image with objects < smallest_grain_size_nm2 removed.
- Return type:
npt.NDArray
- remove_small_objects(image: numpy.array, **kwargs) numpy.typing.NDArray #
Remove small objects from the input image.
Threshold determined by the minimum grain size, in pixels squared, of the classes initialisation.
- Parameters:
image (np.array) – 2-D Numpy array to remove small objects from.
**kwargs – Arguments passed to ‘skimage.morphology.remove_small_objects(**kwargs)’.
- Returns:
2-D Numpy array of image with objects < minimumm_grain_size removed.
- Return type:
npt.NDArray
- area_thresholding(image: numpy.typing.NDArray, area_thresholds: tuple) numpy.typing.NDArray #
Remove objects larger and smaller than the specified thresholds.
- Parameters:
image (npt.NDArray) – Image array where the background == 0 and grains are labelled as integers >0.
area_thresholds (tuple) – List of area thresholds (in nanometres squared, not pixels squared), first is the lower limit for size, second is the upper.
- Returns:
Array with small and large objects removed.
- Return type:
npt.NDArray
- colour_regions(image: numpy.typing.NDArray, **kwargs) numpy.typing.NDArray #
Colour the regions.
- Parameters:
image (npt.NDArray) – 2-D array of labelled regions to be coloured.
**kwargs – Arguments passed to ‘skimage.color.label2rgb(**kwargs)’.
- Returns:
Numpy array of image with objects coloured.
- Return type:
np.array
- static get_region_properties(image: numpy.array, **kwargs) list #
Extract the properties of each region.
- Parameters:
image (np.array) – Numpy array representing image.
**kwargs – Arguments passed to ‘skimage.measure.regionprops(**kwargs)’.
- Returns:
List of region property objects.
- Return type:
list
- get_bounding_boxes(direction: str) dict #
Derive a list of bounding boxes for each region from the derived region_properties.
- Parameters:
direction (str) – Direction of threshold for which bounding boxes are being calculated.
- Returns:
Dictionary of bounding boxes indexed by region area.
- Return type:
dict
- find_grains()#
Find grains.
- static improve_grain_segmentation_unet(filename: str, direction: str, unet_config: dict[str, str | int | float | tuple[int | None, int, int, int] | None], image: numpy.typing.NDArray, labelled_grain_regions: numpy.typing.NDArray) tuple[numpy.typing.NDArray, numpy.typing.NDArray] #
Use a UNet model to re-segment existing grains to improve their accuracy.
- Parameters:
filename (str) – File being processed (used in logging).
direction (str) – Direction of threshold for which bounding boxes are being calculated.
unet_config (dict[str, str | int | float | tuple[int | None, int, int, int] | None]) –
Configuration for the UNet model. model_path: str
Path to the UNet model.
- grain_crop_padding: int
Padding to add to the bounding box of the grain before cropping.
- upper_norm_bound: float
Upper bound for normalising the image.
- lower_norm_bound: float
Lower bound for normalising the image.
image (npt.NDArray) – 2-D Numpy array of image.
labelled_grain_regions (npt.NDArray) – 2-D Numpy array of labelled grain regions.
- Returns:
npt.NDArray – NxNxC Numpy array of the UNet mask.
npt.NDArray – NxNxC Numpy array of the labelled regions from the UNet mask.
- static keep_largest_labelled_region(labelled_image: numpy.typing.NDArray[numpy.int32]) numpy.typing.NDArray[numpy.bool_] #
Keep only the largest region in a labelled image.
- Parameters:
labelled_image (npt.NDArray) – 2-D Numpy array of labelled regions.
- Returns:
2-D Numpy boolean array of labelled regions with only the largest region.
- Return type:
npt.NDArray