Source code for topostats.plottingfuncs

"""Plotting data."""

from __future__ import annotations

import logging
from importlib import resources
from pathlib import Path

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
from matplotlib.patches import Patch, Rectangle
from mpl_toolkits.axes_grid1 import make_axes_locatable
from skimage.morphology import binary_dilation

import topostats
from topostats.logs.logs import LOGGER_NAME
from topostats.theme import Colormap

# pylint: disable=dangerous-default-value
# pylint: disable=too-many-arguments
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-many-locals
# pylint: disable=too-many-positional-arguments

LOGGER = logging.getLogger(LOGGER_NAME)


[docs] def add_pixel_to_nm_to_plotting_config(plotting_config: dict, pixel_to_nm_scaling: float) -> dict: """ Add the pixel to nanometre scaling factor to plotting configs. Ensures plots are in nanometres and not pixels. Parameters ---------- plotting_config : dict TopoStats plotting configuration dictionary. pixel_to_nm_scaling : float Pixel to nanometre scaling factor for the image. Returns ------- dict Updated plotting config with the pixel to nanometre scaling factor applied to all the image configurations. """ # Update PLOT_DICT with pixel_to_nm_scaling (can't add _output_dir since it changes) plot_opts = {"pixel_to_nm_scaling": pixel_to_nm_scaling} for image, options in plotting_config["plot_dict"].items(): plotting_config["plot_dict"][image] = {**options, **plot_opts} return plotting_config
[docs] def dilate_binary_image(binary_image: npt.NDArray, dilation_iterations: int) -> npt.NDArray: """ Dilate a supplied binary image a given number of times. Parameters ---------- binary_image : npt.NDArray Binary image to be dilated. dilation_iterations : int Number of dilation iterations to be performed. Returns ------- npt.NDArray Dilated binary image. """ binary_image = binary_image.copy() for _ in range(dilation_iterations): binary_image = binary_dilation(binary_image) return binary_image
[docs] def load_mplstyle(style: str | Path) -> None: """ Load the Matplotlibrc parameter file. Parameters ---------- style : str | Path Path to a Matplotlib Style file. """ if style == "topostats.mplstyle": plt.style.use(resources.files(topostats) / style) else: plt.style.use(style)
[docs] class Images: """ Plots image arrays. Parameters ---------- data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure'). """ def __init__( self, data: npt.NDarray, output_dir: str | Path, filename: str, style: str | Path = None, pixel_to_nm_scaling: float = 1.0, masked_array: npt.NDarray = None, plot_coords: npt.NDArray = None, title: str = None, image_type: str = "non-binary", image_set: str = "core", core_set: bool = False, pixel_interpolation: str | None = None, cmap: str | None = None, mask_cmap: str = "jet_r", region_properties: dict = None, zrange: list = None, colorbar: bool = True, axes: bool = True, num_ticks: tuple[int | None] = (None, None), save: bool = True, savefig_format: str | None = None, histogram_log_axis: bool = True, histogram_bins: int | None = None, savefig_dpi: str | float | None = None, ) -> None: """ Initialise the class. There are two key parameters that ensure whether an image is plotted that are passed in from the updated plotting dictionary. These are the `image_set` which defines whether to plot 'all' images or just the `core` set. There is then the 'core_set' which defines whether an individual images belongs to the 'core_set' or not. If it doesn't then it is not plotted when `image_set == "core"`. Parameters ---------- data : npt.NDarray Numpy array to plot. output_dir : str | Path Output directory to save the file to. filename : str Filename to save image as. style : str | Path Filename of matplotlibrc parameters. pixel_to_nm_scaling : float The scaling factor showing the real length of 1 pixel in nanometers (nm). masked_array : npt.NDarray Optional mask array to overlay onto an image. plot_coords : npt.NDArray ??? Needs defining. title : str Title for plot. image_type : str The image data type, options are 'binary' or 'non-binary'. image_set : str The set of images to process, options are 'core' or 'all'. core_set : bool Flag to identify image as part of the core image set or not. pixel_interpolation : str, optional Interpolation to use (default is 'None'). cmap : str, optional Colour map to use (default 'nanoscope', 'afmhot' also available). mask_cmap : str Colour map to use for the secondary (masked) data (default 'jet_r', 'blu' provides more contrast). region_properties : dict Dictionary of region properties, adds bounding boxes if specified. zrange : list Lower and upper bound to clip core images to. colorbar : bool Optionally add a colorbar to plots, default is False. axes : bool Optionally add/remove axes from the image. num_ticks : tuple[int | None] The number of x and y ticks to display on the iage. save : bool Whether to save the image. savefig_format : str, optional Format to save the image as. histogram_log_axis : bool Optionally use a loagrithmic y-axis for the histogram plots. histogram_bins : int, optional Number of bins for histograms to use. savefig_dpi : str | float, optional The resolution of the saved plot (default 'figure'). """ if style is None: style = "topostats.mplstyle" load_mplstyle(style) if zrange is None: zrange = [None, None] self.data = data self.output_dir = Path(output_dir) self.filename = filename self.pixel_to_nm_scaling = pixel_to_nm_scaling self.masked_array = masked_array self.plot_coords = plot_coords self.title = title self.image_type = image_type self.image_set = image_set self.core_set = core_set self.interpolation = mpl.rcParams["image.interpolation"] if pixel_interpolation is None else pixel_interpolation cmap = mpl.rcParams["image.cmap"] if cmap is None else cmap self.cmap = Colormap(cmap).get_cmap() self.mask_cmap = Colormap(mask_cmap).get_cmap() self.region_properties = region_properties self.zrange = zrange self.colorbar = colorbar self.axes = axes self.num_ticks = num_ticks self.save = save self.savefig_format = mpl.rcParams["savefig.format"] if savefig_format is None else savefig_format self.histogram_log_axis = histogram_log_axis self.histogram_bins = mpl.rcParams["hist.bins"] if histogram_bins is None else histogram_bins self.savefig_dpi = mpl.rcParams["savefig.dpi"] if savefig_dpi is None else savefig_dpi
[docs] def plot_histogram_and_save(self) -> tuple | None: """ Plot and save a histogram of the height map. Returns ------- tuple | None Matplotlib.pyplot figure object and Matplotlib.pyplot axes object. """ if self.image_set == "all": fig, ax = plt.subplots(1, 1) ax.hist(self.data.flatten().astype(float), bins=self.histogram_bins, log=self.histogram_log_axis) ax.set_xlabel("pixel height") if self.histogram_log_axis: ax.set_ylabel("frequency in image (log)") else: ax.set_ylabel("frequency in image") plt.title(self.title) plt.savefig( (self.output_dir / f"{self.filename}_histogram.{self.savefig_format}"), bbox_inches="tight", pad_inches=0.5, dpi=self.savefig_dpi, ) plt.close() return fig, ax return None
[docs] def plot_curvatures( self, image: npt.NDArray, cropped_images: dict, grains_curvature_stats_dict: dict, all_grain_smoothed_data: dict, colourmap_normalisation_bounds: tuple[float, float], ) -> tuple[plt.Figure | None, plt.Axes | None]: """ Plot curvature intensity and defects of grains in an image. Parameters ---------- image : npt.NDArray Image to plot. cropped_images : dict Dictionary containing cropped images of grains and the bounding boxes and padding. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grain_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple[float, float] Tuple of the colour map normalisation bounds. Returns ------- tuple[plt.Figure | None, plt.Axes | None] Matplotlib.pyplot figure object and Matplotlib.pyplot axes object. """ fig, ax = None, None # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set if self.image_set == "all" or self.core_set: # Get the shape of the image shape = image.shape fig, ax = plt.subplots(1, 1) ax.imshow( image, extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling), interpolation=self.interpolation, cmap=self.cmap, vmin=self.zrange[0], vmax=self.zrange[1], ) # For each grain, plot the points with the colour determined by the curvature value # Iterate over the grains for (_, grain_data_curvature), (_, grain_data_smoothed_trace), (_, grain_image_container) in zip( grains_curvature_stats_dict.items(), all_grain_smoothed_data.items(), cropped_images.items() ): # Get the coordinate for the grain to accurately position the points min_row = grain_image_container["bbox"][0] min_col = grain_image_container["bbox"][1] pad_width = grain_image_container["pad_width"] # Iterate over molecules for (_, molecule_data_curvature), ( _, molecule_data_smoothed_trace, ) in zip(grain_data_curvature.items(), grain_data_smoothed_trace.items()): # Normalise the curvature values to the colourmap bounds normalised_curvature = np.array(molecule_data_curvature) normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0] normalised_curvature = normalised_curvature / ( colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0] ) molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"] # pylint cannot see that mpl.cm.viridis is a valid attribute # pylint: disable=no-member cmap = mpl.cm.coolwarm for index, point in enumerate(molecule_trace_coords): color = cmap(normalised_curvature[index]) if index > 0: previous_point = molecule_trace_coords[index - 1] ax.plot( [ (min_col - pad_width + previous_point[1]) * self.pixel_to_nm_scaling, (min_col - pad_width + point[1]) * self.pixel_to_nm_scaling, ], [ (image.shape[0] - (min_row - pad_width + previous_point[0])) * self.pixel_to_nm_scaling, (image.shape[0] - (min_row - pad_width + point[0])) * self.pixel_to_nm_scaling, ], color=color, linewidth=1, ) # save the figure plt.title(self.title) plt.xlabel("Nanometres") plt.ylabel("Nanometres") set_n_ticks(ax, self.num_ticks) plt.axis(self.axes) fig.tight_layout() plt.savefig( (self.output_dir / f"{self.filename}.{self.savefig_format}"), bbox_inches="tight", pad_inches=0, dpi=self.savefig_dpi, ) plt.close() return fig, ax
[docs] def plot_curvatures_individual_grains( self, cropped_images: dict, grains_curvature_stats_dict: dict, all_grains_smoothed_data: dict, colourmap_normalisation_bounds: tuple[float, float], ) -> None: """ Plot curvature intensity and defects of individual grains. Parameters ---------- cropped_images : dict Dictionary of cropped images. grains_curvature_stats_dict : dict Dictionary of grain curvature statistics. all_grains_smoothed_data : dict Dictionary containing smoothed grain traces. colourmap_normalisation_bounds : tuple Tuple of the colour map normalisation bounds. """ fig, ax = None, None # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set if self.image_set == "all" or self.core_set: # Iterate over grains for ( (grain_index, grain_data_curvature), (_, grain_data_smoothed_trace), (_, grain_image_container), ) in zip(grains_curvature_stats_dict.items(), all_grains_smoothed_data.items(), cropped_images.items()): grain_image = grain_image_container["original_image"] shape = grain_image.shape fig, ax = plt.subplots(1, 1) ax.imshow( grain_image, extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling), interpolation=self.interpolation, cmap=self.cmap, vmin=self.zrange[0], vmax=self.zrange[1], ) # Iterate over molecules for (_, molecule_data_curvature), (_, molecule_data_smoothed_trace) in zip( grain_data_curvature.items(), grain_data_smoothed_trace.items() ): molecule_trace_coords = molecule_data_smoothed_trace["spline_coords"] # Normalise the curvature values to the colourmap bounds normalised_curvature = np.array(molecule_data_curvature) normalised_curvature = normalised_curvature - colourmap_normalisation_bounds[0] normalised_curvature = normalised_curvature / ( colourmap_normalisation_bounds[1] - colourmap_normalisation_bounds[0] ) # pylint cannot see that mpl.cm.viridis is a valid attribute # pylint: disable=no-member cmap = mpl.cm.coolwarm for index, point in enumerate(molecule_trace_coords): colour = cmap(normalised_curvature[index]) if index > 0: previous_point = molecule_trace_coords[index - 1] ax.plot( [ previous_point[1] * self.pixel_to_nm_scaling, point[1] * self.pixel_to_nm_scaling, ], [ (shape[0] - previous_point[0]) * self.pixel_to_nm_scaling, (shape[0] - point[0]) * self.pixel_to_nm_scaling, ], color=colour, linewidth=3, ) plt.title(self.title) plt.xlabel("Nanometres") plt.ylabel("Nanometres") set_n_ticks(ax, self.num_ticks) plt.axis(self.axes) fig.tight_layout() # plt.savefig(f"./grain_{grain_index}_curvature.png") fig.savefig( (self.output_dir / f"{grain_index}_curvature.{self.savefig_format}"), bbox_inches="tight", pad_inches=0, dpi=self.savefig_dpi, ) plt.close() LOGGER.debug( f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}" f" | DPI: {self.savefig_dpi}" )
[docs] def plot_and_save(self): """ Plot and save the image. Returns ------- tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object. """ fig, ax = None, None if self.save: # Only plot if image_set is "all" (i.e. user wants all images) or an image is in the core_set if self.image_set == "all" or self.core_set: fig, ax = self.save_figure() LOGGER.debug( f"[{self.filename}] : Image saved to : {str(self.output_dir / self.filename)}.{self.savefig_format}" f" | DPI: {self.savefig_dpi}" ) plt.close() return fig, ax return fig, ax
[docs] def save_figure(self): """ Save figures as plt.savefig objects. Returns ------- tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object. """ fig, ax = plt.subplots(1, 1) shape = self.data.shape if isinstance(self.data, np.ndarray): im = ax.imshow( self.data, extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling), interpolation=self.interpolation, cmap=self.cmap, vmin=self.zrange[0], vmax=self.zrange[1], ) if isinstance(self.masked_array, np.ndarray): mask = np.ma.masked_where(self.masked_array == 0, self.masked_array) ax.imshow( mask, cmap=self.mask_cmap, extent=( 0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling, ), interpolation=self.interpolation, alpha=0.7, ) patch = [Patch(color=self.mask_cmap(1, 0.7), label="Mask")] plt.legend(handles=patch, loc="upper right", bbox_to_anchor=(1.02, 1.09)) # if coordinates are provided (such as in splines, plot those) elif self.plot_coords is not None: for grain_coords in self.plot_coords: ax.plot( grain_coords[:, 1] * self.pixel_to_nm_scaling, (shape[0] - grain_coords[:, 0]) * self.pixel_to_nm_scaling, c="c", linewidth=1, ) plt.title(self.title) plt.xlabel("Nanometres") plt.ylabel("Nanometres") set_n_ticks(ax, self.num_ticks) plt.axis(self.axes) if self.colorbar and self.image_type == "non-binary": divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax, label="Height (Nanometres)") if self.region_properties: fig, ax = add_bounding_boxes_to_plot(fig, ax, shape, self.region_properties, self.pixel_to_nm_scaling) if not self.axes and not self.colorbar: plt.title("") fig.frameon = False plt.box(False) plt.tight_layout() plt.savefig( (self.output_dir / f"{self.filename}.{self.savefig_format}"), bbox_inches="tight", pad_inches=0, dpi=self.savefig_dpi, ) else: plt.savefig((self.output_dir / f"{self.filename}.{self.savefig_format}"), dpi=self.savefig_dpi) else: plt.xlabel("Nanometres") plt.ylabel("Nanometres") self.data.show( ax=ax, extent=(0, shape[1] * self.pixel_to_nm_scaling, 0, shape[0] * self.pixel_to_nm_scaling), interpolation=self.interpolation, cmap=self.cmap, ) plt.close() return fig, ax
[docs] def add_bounding_boxes_to_plot(fig, ax, shape: tuple, region_properties: list, pixel_to_nm_scaling: float) -> tuple: """ Add the bounding boxes to a plot. Parameters ---------- fig : plt.figure.Figure Matplotlib.pyplot figure object. ax : plt.axes._subplots.AxesSubplot Matplotlib.pyplot axes object. shape : tuple Tuple of the image-to-be-plot's shape. region_properties : list Region properties to add bounding boxes from. pixel_to_nm_scaling : float The scaling factor from px to nm. Returns ------- tuple Matplotlib.pyplot figure object and Matplotlib.pyplot axes object. """ for region in region_properties: min_y, min_x, max_y, max_x = (x * pixel_to_nm_scaling for x in region.bbox) # Correct y-axis min_y = (shape[0] * pixel_to_nm_scaling) - min_y max_y = (shape[0] * pixel_to_nm_scaling) - max_y rectangle = Rectangle((min_x, min_y), max_x - min_x, max_y - min_y, fill=False, edgecolor="white", linewidth=2) ax.add_patch(rectangle) return fig, ax
[docs] def set_n_ticks(ax: plt.Axes.axes, n_xy: list[int | None, int | None]) -> None: """ Set the number of ticks along the y and x axes and lets matplotlib assign the values. Parameters ---------- ax : plt.Axes.axes The axes to add ticks to. n_xy : list[int, int] The number of ticks. Returns ------- plt.Axes.axes The axes with the new ticks. """ if n_xy[0] is not None: xlim = ax.get_xlim() xstep = (max(xlim) - min(xlim)) / (n_xy[0] - 1) xticks = np.arange(min(xlim), max(xlim) + xstep, xstep) ax.set_xticks(np.round(xticks)) if n_xy[1] is not None: ylim = ax.get_ylim() ystep = (max(ylim) - min(ylim)) / (n_xy[1] - 1) yticks = np.arange(min(ylim), max(ylim) + ystep, ystep) ax.set_yticks(np.round(yticks))