topostats.processing#
Functions for processing data.
Attributes#
Functions#
|
Filter and flatten an image. Optionally plots the results, returning the flattened image. |
|
Identify grains (molecules) and optionally plots the results. |
|
Calculate grain statistics for an image and optionally plots the results. |
|
Skeletonise and prune grains, adding results to statistics data frames and optionally plot results. |
|
Analyse crossing points in grains adding results to statistics data frames and optionally plot results. |
|
Order coordinates of traces, adding results to statistics data frames and optionally plot results. |
|
Smooth the ordered trace coordinates, adding results to statistics data frames and optionally plot results. |
|
Determine components of output paths for a given image and plotting config. |
|
Process a single image, filtering, finding grains and calculating their statistics. |
|
Check options for running steps (Filter, Grain, Grainstats and DNA tracing) are logically consistent. |
|
Print a completion message summarising images processed. |
Module Contents#
- topostats.processing.LOGGER#
- topostats.processing.run_filters(unprocessed_image: numpy.typing.NDArray, pixel_to_nm_scaling: float, filename: str, filter_out_path: pathlib.Path, core_out_path: pathlib.Path, filter_config: dict, plotting_config: dict) numpy.typing.NDArray | None [source]#
Filter and flatten an image. Optionally plots the results, returning the flattened image.
- Parameters:
unprocessed_image (npt.NDArray) – Image to be flattened.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometres. ie the number of pixels per nanometre.
filename (str) – File name for the image.
filter_out_path (Path) – Output directory for step-by-step flattening plots.
core_out_path (Path) – General output directory for outputs such as the flattened image.
filter_config (dict) – Dictionary of configuration for the Filters class to use when initialised.
plotting_config (dict) – Dictionary of configuration for plotting output images.
- Returns:
Either a numpy array of the flattened image, or None if an error occurs or flattening is disabled in the configuration.
- Return type:
npt.NDArray | None
- topostats.processing.run_grains(image: numpy.typing.NDArray, pixel_to_nm_scaling: float, filename: str, grain_out_path: pathlib.Path, core_out_path: pathlib.Path, plotting_config: dict, grains_config: dict) dict | None [source]#
Identify grains (molecules) and optionally plots the results.
- Parameters:
image (npt.NDArray) – 2d numpy array image to find grains in.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometres. I.e. the number of pixels per nanometre.
filename (str) – Name of file being processed (used in logging).
grain_out_path (Path) – Output path for step-by-step grain finding plots.
core_out_path (Path) – General output directory for outputs such as the flattened image with grain masks overlaid.
plotting_config (dict) – Dictionary of configuration for plotting images.
grains_config (dict) – Dictionary of configuration for the Grains class to use when initialised.
- Returns:
Either None in the case of error or grain finding being disabled or a dictionary with keys of “above” and or “below” containing binary masks depicting where grains have been detected.
- Return type:
dict | None
- topostats.processing.run_grainstats(image: numpy.typing.NDArray, pixel_to_nm_scaling: float, grain_masks: dict, filename: str, basename: pathlib.Path, grainstats_config: dict, plotting_config: dict, grain_out_path: pathlib.Path)[source]#
Calculate grain statistics for an image and optionally plots the results.
- Parameters:
image (npt.NDArray) – 2D numpy array image for grain statistics calculations.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometres. ie the number of pixels per nanometre.
grain_masks (dict) – Dictionary of grain masks, keys “above” or “below” with values of 2d numpy boolean arrays indicating the pixels that have been masked as grains.
filename (str) – Name of the image.
basename (Path) – Path to directory containing the image.
grainstats_config (dict) – Dictionary of configuration for the GrainStats class to be used when initialised.
plotting_config (dict) – Dictionary of configuration for plotting images.
grain_out_path (Path) – Directory to save optional grain statistics visual information to.
- Returns:
A pandas DataFrame containing the statsistics for each grain. The index is the filename and grain number.
- Return type:
pd.DataFrame
- topostats.processing.run_disordered_tracing(image: numpy.typing.NDArray, grain_masks: dict, pixel_to_nm_scaling: float, filename: str, basename: str, core_out_path: pathlib.Path, tracing_out_path: pathlib.Path, disordered_tracing_config: dict, plotting_config: dict, grainstats_df: pandas.DataFrame = None) dict [source]#
Skeletonise and prune grains, adding results to statistics data frames and optionally plot results.
- Parameters:
image (npt.ndarray) – Image containing the grains to pass to the tracing function.
grain_masks (dict) – Dictionary of grain masks, keys “above” or “below” with values of 2D Numpy boolean arrays indicating the pixels that have been masked as grains.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometers, i.e. the number of pixesl per nanometres (nm).
filename (str) – Name of the image.
basename (Path) – Path to directory containing the image.
core_out_path (Path) – Path to save the core disordered trace image to.
tracing_out_path (Path) – Path to save the optional, diagnostic disordered trace images to.
disordered_tracing_config (dict) – Dictionary configuration for obtaining a disordered trace representation of the grains.
plotting_config (dict) – Dictionary configuration for plotting images.
grainstats_df (pd.DataFrame | None) – The grain statistics dataframe to be added to. This optional argument defaults to None in which case an empty grainstats dataframe is created.
- Returns:
Dictionary of “grain_<index>” keys and Nx2 coordinate arrays of the disordered grain trace.
- Return type:
dict
- topostats.processing.run_nodestats(image: numpy.typing.NDArray, disordered_tracing_data: dict, pixel_to_nm_scaling: float, filename: str, core_out_path: pathlib.Path, tracing_out_path: pathlib.Path, nodestats_config: dict, plotting_config: dict, grainstats_df: pandas.DataFrame = None) tuple[dict, pandas.DataFrame] [source]#
Analyse crossing points in grains adding results to statistics data frames and optionally plot results.
- Parameters:
image (npt.ndarray) – Image containing the DNA to pass to the tracing function.
disordered_tracing_data (dict) – Dictionary of skeletonised and pruned grain masks. Result from “run_disordered_tracing”.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometers, i.e. the number of pixels per nanometres (nm).
filename (str) – Name of the image.
core_out_path (Path) – Path to save the core NodeStats image to.
tracing_out_path (Path) – Path to save optional, diagnostic NodeStats images to.
nodestats_config (dict) – Dictionary configuration for analysing the crossing points.
plotting_config (dict) – Dictionary configuration for plotting images.
grainstats_df (pd.DataFrame | None) – The grain statistics dataframe to bee added to. This optional argument defaults to None in which case an empty grainstats dataframe is created.
- Returns:
A NodeStats analysis dictionary and grainstats metrics dataframe.
- Return type:
tuple[dict, pd.DataFrame]
- topostats.processing.run_ordered_tracing(image: numpy.typing.NDArray, disordered_tracing_data: dict, nodestats_data: dict, filename: str, basename: pathlib.Path, core_out_path: pathlib.Path, tracing_out_path: pathlib.Path, ordered_tracing_config: dict, plotting_config: dict, grainstats_df: pandas.DataFrame = None) tuple [source]#
Order coordinates of traces, adding results to statistics data frames and optionally plot results.
- Parameters:
image (npt.ndarray) – Image containing the DNA to pass to the tracing function.
disordered_tracing_data (dict) – Dictionary of skeletonised and pruned grain masks. Result from “run_disordered_tracing”.
nodestats_data (dict) – Dictionary of images and statistics from the NodeStats analysis. Result from “run_nodestats”.
filename (str) – Name of the image.
basename (Path) – The path of the files’ parent directory.
core_out_path (Path) – Path to save the core ordered tracing image to.
tracing_out_path (Path) – Path to save optional, diagnostic ordered trace images to.
ordered_tracing_config (dict) – Dictionary configuration for obtaining an ordered trace representation of the skeletons.
plotting_config (dict) – Dictionary configuration for plotting images.
grainstats_df (pd.DataFrame | None) – The grain statistics dataframe to be added to. This optional argument defaults to None in which case an empty grainstats dataframe is created.
- Returns:
A NodeStats analysis dictionary and grainstats metrics dataframe.
- Return type:
tuple[dict, pd.DataFrame]
- topostats.processing.run_splining(image: numpy.typing.NDArray, ordered_tracing_data: dict, pixel_to_nm_scaling: float, filename: str, core_out_path: pathlib.Path, splining_config: dict, plotting_config: dict, grainstats_df: pandas.DataFrame = None, molstats_df: pandas.DataFrame = None) tuple [source]#
Smooth the ordered trace coordinates, adding results to statistics data frames and optionally plot results.
- Parameters:
image (npt.NDArray) – Image containing the DNA to pass to the tracing function.
ordered_tracing_data (dict) – Dictionary of ordered coordinates. Result from “run_ordered_tracing”.
pixel_to_nm_scaling (float) – Scaling factor for converting pixel length scales to nanometers, i.e. the number of pixels per nanometres (nm).
filename (str) – Name of the image.
core_out_path (Path) – Path to save the core ordered tracing image to.
splining_config (dict) – Dictionary configuration for obtaining an ordered trace representation of the skeletons.
plotting_config (dict) – Dictionary configuration for plotting images.
grainstats_df (pd.DataFrame | None) – The grain statistics dataframe to be added to. This optional argument defaults to None in which case an empty grainstats dataframe is created.
molstats_df (pd.DataFrame | None) – The molecule statistics dataframe to be added to. This optional argument defaults to None in which case an empty grainstats dataframe is created.
- Returns:
A smooth curve analysis dictionary and grainstats metrics dataframe.
- Return type:
tuple[dict, pd.DataFrame]
- topostats.processing.get_out_paths(image_path: pathlib.Path, base_dir: pathlib.Path, output_dir: pathlib.Path, filename: str, plotting_config: dict)[source]#
Determine components of output paths for a given image and plotting config.
- Parameters:
image_path (Path) – Path of the image being processed.
base_dir (Path) – Path of the data folder.
output_dir (Path) – Base output directory for output data.
filename (str) – Name of the image being processed.
plotting_config (dict) – Dictionary of configuration for plotting images.
- Returns:
Core output path for general file outputs, filter output path for flattening related files and grain output path for grain finding related files.
- Return type:
tuple
- topostats.processing.process_scan(topostats_object: dict, base_dir: str | pathlib.Path, filter_config: dict, grains_config: dict, grainstats_config: dict, disordered_tracing_config: dict, nodestats_config: dict, ordered_tracing_config: dict, splining_config: dict, plotting_config: dict, output_dir: str | pathlib.Path = 'output') tuple[dict, pandas.DataFrame, dict] [source]#
Process a single image, filtering, finding grains and calculating their statistics.
- Parameters:
topostats_object (dict[str, Union[npt.NDArray, Path, float]]) – A dictionary with keys ‘image’, ‘img_path’ and ‘pixel_to_nm_scaling’ containing a file or frames’ image, it’s path and it’s pixel to namometre scaling value.
base_dir (str | Path) – Directory to recursively search for files, if not specified the current directory is scanned.
filter_config (dict) – Dictionary of configuration options for running the Filter stage.
grains_config (dict) – Dictionary of configuration options for running the Grain detection stage.
grainstats_config (dict) – Dictionary of configuration options for running the Grain Statistics stage.
disordered_tracing_config (dict) – Dictionary configuration for obtaining a disordered trace representation of the grains.
nodestats_config (dict) – Dictionary of configuration options for running the NodeStats stage.
ordered_tracing_config (dict) – Dictionary configuration for obtaining an ordered trace representation of the skeletons.
splining_config (dict) – Dictionary of configuration options for running the splining stage.
plotting_config (dict) – Dictionary of configuration options for plotting figures.
output_dir (str | Path) – Directory to save output to, it will be created if it does not exist. If it already exists then it is possible that output will be over-written.
- Returns:
TopoStats dictionary object, DataFrame containing grain statistics and dna tracing statistics, and dictionary containing general image statistics.
- Return type:
tuple[dict, pd.DataFrame, dict]
- topostats.processing.check_run_steps(filter_run: bool, grains_run: bool, grainstats_run: bool, disordered_tracing_run: bool, nodestats_run: bool, ordered_tracing_run: bool, splining_run: bool) None [source]#
Check options for running steps (Filter, Grain, Grainstats and DNA tracing) are logically consistent.
This checks that earlier steps required are enabled.
- Parameters:
filter_run (bool) – Flag for running Filtering.
grains_run (bool) – Flag for running Grains.
grainstats_run (bool) – Flag for running GrainStats.
disordered_tracing_run (bool) – Flag for running Disordered Tracing.
nodestats_run (bool) – Flag for running NodeStats.
ordered_tracing_run (bool) – Flag for running Ordered Tracing.
splining_run (bool) – Flag for running DNA Tracing.
- topostats.processing.completion_message(config: dict, img_files: list, summary_config: dict, images_processed: int) None [source]#
Print a completion message summarising images processed.
- Parameters:
config (dict) – Configuration dictionary.
img_files (list) – List of found image paths.
summary_config (dict) – Configuration for plotting summary statistics.
images_processed (int) – Pandas DataFrame of results.