Source code for topostats.grains

"""Find grains in an image."""

# pylint: disable=no-name-in-module
from __future__ import annotations

import logging
import re
import sys
from collections import defaultdict
from dataclasses import dataclass
from typing import Any

import keras
import numpy as np
import numpy.typing as npt
from skimage import morphology
from skimage.color import label2rgb
from skimage.measure import label, regionprops
from skimage.morphology import binary_dilation
from skimage.segmentation import clear_border

from topostats.logs.logs import LOGGER_NAME
from topostats.thresholds import threshold
from topostats.unet_masking import (
    iou_loss,
    make_bounding_box_square,
    mean_iou,
    pad_bounding_box,
    predict_unet,
)
from topostats.utils import _get_mask, get_thresholds

LOGGER = logging.getLogger(LOGGER_NAME)

# pylint: disable=fixme
# pylint: disable=line-too-long
# pylint: disable=too-many-arguments
# pylint: disable=too-many-instance-attributes
# pylint: disable=too-many-lines
# pylint: disable=too-many-positional-arguments
# pylint: disable=too-many-public-methods
# pylint: disable=bare-except
# pylint: disable=dangerous-default-value


[docs] class GrainCrop: """ Class for storing the crops of grains. Parameters ---------- image : npt.NDArray[np.float32] 2-D Numpy array of the cropped image. mask : npt.NDArray[np.bool_] 3-D Numpy tensor of the cropped mask. padding : int Padding added to the bounding box of the grain during cropping. bbox : tuple[int, int, int, int] Bounding box of the crop including padding. pixel_to_nm_scaling : float Pixel to nanometre scaling factor for the crop. filename : str Filename of the image from which the crop was taken. height_profiles : dict[int, [int, npt.NDArray[np.float32]]] | None 3-D Numpy tensor of the height profiles. stats : dict[int, dict[int, Any]] | None Dictionary of grain statistics. """ def __init__( self, image: npt.NDArray[np.float32], mask: npt.NDArray[np.bool_], padding: int, bbox: tuple[int, int, int, int], pixel_to_nm_scaling: float, filename: str, height_profiles: dict[int, dict[int, npt.NDArray[np.float32]]] | None = None, stats: dict[int, dict[int, Any]] | None = None, ): """ Initialise the class. Parameters ---------- image : npt.NDArray[np.float32] 2-D Numpy array of the cropped image. mask : npt.NDArray[np.bool_] 3-D Numpy tensor of the cropped mask. padding : int Padding added to the bounding box of the grain during cropping. bbox : tuple[int, int, int, int] Bounding box of the crop including padding. pixel_to_nm_scaling : float Pixel to nanometre scaling factor for the crop. filename : str Filename of the image from which the crop was taken. height_profiles : dict[int, [int, npt.NDArray[np.float32]]] | None 3-D Numpy tensor of the height profiles. stats : dict[int, dict[int, Any]] | None Dictionary of grain statistics. """ self.padding = padding self.image = image # This part of the constructor must go after padding since the setter # for mask requires the padding. self.mask = mask self.bbox = bbox self.pixel_to_nm_scaling = pixel_to_nm_scaling self.filename = filename self.height_profiles = height_profiles self.stats = stats @property def image(self) -> npt.NDArray[np.float32]: """ Getter for the image. Returns ------- npt.NDArray Numpy array of the image. """ return self._image @image.setter def image(self, value: npt.NDArray[np.float32]): """ Setter for the image. Parameters ---------- value : npt.NDArray Numpy array of the image. Raises ------ ValueError If the image is not square. """ if value.shape[0] != value.shape[1]: raise ValueError(f"Image is not square: {value.shape}") self._image = value @property def mask(self) -> npt.NDArray[np.bool_]: """ Getter for the mask. Returns ------- npt.NDArray[np.bool_] Numpy array of the mask. """ return self._mask @mask.setter def mask(self, value: npt.NDArray[np.bool_]) -> None: """ Setter for the mask. Parameters ---------- value : npt.NDArray Numpy array of the mask. Raises ------ ValueError If the mask dimensions do not match the image. """ if value.shape[0] != self.image.shape[0] or value.shape[1] != self.image.shape[1]: raise ValueError(f"Mask dimensions do not match image: {value.shape} vs {self.image.shape}") # Ensure that the padding region is blank, set it to be blank if not for class_index in range(1, value.shape[2]): class_mask = value[:, :, class_index] padded_region_top = class_mask[: self.padding, :] padded_region_bottom = class_mask[-self.padding :, :] padded_region_left = class_mask[:, : self.padding] padded_region_right = class_mask[:, -self.padding :] if ( np.any(padded_region_top) or np.any(padded_region_bottom) or np.any(padded_region_left) or np.any(padded_region_right) ): LOGGER.warning("Padding region is not blank, setting to blank") value[: self.padding, :, class_index] = 0 value[-self.padding :, :, class_index] = 0 value[:, : self.padding, class_index] = 0 value[:, -self.padding :, class_index] = 0 # Update background class in case the mask has been edited value = Grains.update_background_class(value) self._mask: npt.NDArray[np.bool_] = value @property def padding(self) -> int: """ Getter for the padding. Returns ------- int The padding amount. """ return self._padding @padding.setter def padding(self, value: int) -> None: """ Setter for the padding. Parameters ---------- value : int Padding amount. Raises ------ ValueError If the padding is not an integer or is less than 1. """ if not isinstance(value, int): raise ValueError(f"Padding must be an integer, but is {value}") if value < 1: raise ValueError(f"Padding must be >= 1, but is {value}") self._padding = value @property def bbox(self) -> tuple[int, int, int, int]: """ Getter for the bounding box. Returns ------- tuple Bounding box of the crop. Raises ------ ValueError If the bounding box is not square. """ return self._bbox @bbox.setter def bbox(self, value: tuple[int, int, int, int]) -> None: """ Setter for the bounding box. Parameters ---------- value : tuple[int, int, int, int] Bounding box of the crop. """ if len(value) != 4: raise ValueError(f"Bounding box must have 4 elements, but has {len(value)}") if value[2] - value[0] != value[3] - value[1]: raise ValueError( f"Bounding box is not square: {value}, size: {value[2] - value[0]} x {value[3] - value[1]}" ) self._bbox = value @property def pixel_to_nm_scaling(self) -> float: """ Getter for the pixel to nanometre scaling factor. Returns ------- float Pixel to nanometre scaling factor. """ return self._pixel_to_nm_scaling @pixel_to_nm_scaling.setter def pixel_to_nm_scaling(self, value: float) -> None: """ Setter for the pixel to nanometre scaling factor. Parameters ---------- value : float Pixel to nanometre scaling factor. """ self._pixel_to_nm_scaling = value @property def filename(self) -> str: """ Getter for the filename. Returns ------- str The image filename. """ return self._filename @filename.setter def filename(self, value: str) -> None: """ Setter for the filename. Parameters ---------- value : str Image filename. """ self._filename = value @property def height_profiles(self) -> npt.NDArray: """ Getter for the height_profile. Returns ------- str The image height_profile. """ return self._height_profiles @height_profiles.setter def height_profiles(self, value: npt.NDArray) -> None: """ Setter for the height_profile. Parameters ---------- value : str Image height_profile. """ self._height_profiles = value @property def stats(self) -> dict[str, Any]: """ Getter for the stats. Returns ------- str Dictionary of image statistics. """ return self._stats @stats.setter def stats(self, value: dict[str, Any]) -> None: """ Setter for the stats. Parameters ---------- value : dict[str, Any] Image stats. """ self._stats = value def __eq__(self, other: object) -> bool: """ Check if two GrainCrop objects are equal. Parameters ---------- other : object Object to compare to. Returns ------- bool True if the objects are equal, False otherwise. """ if not isinstance(other, GrainCrop): return False return ( np.array_equal(self.image, other.image) and np.array_equal(self.mask, other.mask) and self.padding == other.padding and self.bbox == other.bbox and self.pixel_to_nm_scaling == other.pixel_to_nm_scaling and self.filename == other.filename and self.stats == other.stats and self.height_profiles == other.height_profiles )
[docs] def grain_crop_to_dict(self) -> dict[str, Any]: """ Convert GrainCrop to dictionary indexed by attributes. Returns ------- dict[str, Any] Dictionary indexed by attribute of the grain attributes. """ return {re.sub(r"^_", "", key): value for key, value in self.__dict__.items()}
[docs] def debug_locate_difference(self, other: object) -> None: """ Debug function to find the culprit when two GrainCrop objects are not equal. Parameters ---------- other : object Object to compare to. Raises ------ ValueError If the objects are not equal """ if not isinstance(other, GrainCrop): raise ValueError(f"Cannot compare GrainCrop with {type(other)}") if not np.array_equal(self.image, other.image): raise ValueError("Image is different") if not np.array_equal(self.mask, other.mask): raise ValueError("Mask is different") if self.padding != other.padding: raise ValueError("Padding is different") if self.bbox != other.bbox: raise ValueError("Bounding box is different") if self.pixel_to_nm_scaling != other.pixel_to_nm_scaling: raise ValueError("Pixel to nm scaling is different") if self.filename != other.filename: raise ValueError("Filename is different") LOGGER.info("Cannot find difference between graincrops")
[docs] def validate_full_mask_tensor_shape(array: npt.NDArray[np.bool_]) -> npt.NDArray[np.bool_]: """ Validate the shape of the full mask tensor. Parameters ---------- array : npt.NDArray Numpy array to validate. Returns ------- npt.NDArray Numpy array if valid. """ if len(array.shape) != 3 or array.shape[2] < 2: raise ValueError(f"Full mask tensor must be WxHxC with C >= 2 but has shape {array.shape}") return array
[docs] @dataclass class GrainCropsDirection: """ Dataclass for storing the crops of grains in a particular imaging direction. Attributes ---------- full_mask_tensor : npt.NDArray[np.bool_] Boolean NxNx3 array of the full mask tensor. crops : GrainCrops Grain crops. """ crops: dict[int, GrainCrop] full_mask_tensor: npt.NDArray[np.bool_] def __post_init__(self): """ Validate the full mask tensor shape. Raises ------ ValueError If the full mask tensor shape is invalid. """ self._full_mask_tensor = validate_full_mask_tensor_shape(self.full_mask_tensor) @property def full_mask_tensor(self) -> npt.NDArray[np.bool_]: """ Getter for the full mask tensor. Returns ------- npt.NDArray Numpy array of the full mask tensor. """ return self._full_mask_tensor @full_mask_tensor.setter def full_mask_tensor(self, value: npt.NDArray[np.bool_]): """ Setter for the full mask tensor. Parameters ---------- value : npt.NDArray Numpy array of the full mask tensor. """ self._full_mask_tensor = validate_full_mask_tensor_shape(value).astype(np.bool_) def __eq__(self, other: object) -> bool: """ Check if two GrainCropsDirection objects are equal. Parameters ---------- other : object Object to compare to. Returns ------- bool True if the objects are equal, False otherwise. """ if not isinstance(other, GrainCropsDirection): return False return self.crops == other.crops and np.array_equal(self.full_mask_tensor, other.full_mask_tensor)
[docs] def grain_crops_direction_to_dict(self) -> dict[str, npt.NDArray[np.bool_] | dict[str:Any]]: """ Convert GrainCropsDirection to dictionary indexed by attributes. Returns ------- dict[str, Any] Dictionary indexed by attribute of the grain attributes. """ return {re.sub(r"^_", "", key): value for key, value in self.__dict__.items()}
[docs] def debug_locate_difference(self, other: object) -> None: """ Debug function to find the culprit when two GrainCropsDirection objects are not equal. Parameters ---------- other : object Object to compare to. Raises ------ ValueError If the objects are not equal. """ if not isinstance(other, GrainCropsDirection): raise ValueError(f"Cannot compare GrainCropsDirection with {type(other)}") for crop_index, crop in self.crops.items(): if crop != other.crops[crop_index]: LOGGER.info(f"Grain crop {crop_index} is different:") crop.debug_locate_difference(other.crops[crop_index]) if not np.array_equal(self.full_mask_tensor, other.full_mask_tensor): raise ValueError("Full mask tensor is different") LOGGER.info("Cannot find difference between graincrops")
[docs] def update_full_mask_tensor(self): """Update the full mask tensor from the grain crops.""" self.full_mask_tensor = Grains.construct_full_mask_from_graincrops( graincrops=self.crops, image_shape=self.full_mask_tensor.shape[:2], )
[docs] @dataclass class ImageGrainCrops: """ Dataclass for storing the crops of grains in an image. Attributes ---------- above : GrainCropDirection | None Grains in the above direction. below : GrainCropDirection | None Grains in the below direction. """ above: GrainCropsDirection | None below: GrainCropsDirection | None def __eq__(self, other: object) -> bool: """ Check if two ImageGrainCrops objects are equal. Parameters ---------- other : object Object to compare to. Returns ------- bool True if the objects are equal, False otherwise. """ if not isinstance(other, ImageGrainCrops): return False return self.above == other.above and self.below == other.below
[docs] def image_grain_crops_to_dict(self) -> dict[str, npt.NDArray[np.bool_] | dict[str:Any]]: """ Convert ImageGrainCrops to dictionary indexed by attributes. Returns ------- dict[str, Any] Dictionary indexed by attribute of the grain attributes. """ return {re.sub(r"^_", "", key): value for key, value in self.__dict__.items()}
[docs] def debug_locate_difference(self, other: object) -> None: """ Debug function to find the culprit when two ImageGrainCrops objects are not equal. Parameters ---------- other : object Object to compare to. Raises ------ ValueError If the objects are not equal. """ if not isinstance(other, ImageGrainCrops): raise ValueError(f"Cannot compare ImageGrainCrops with {type(other)}") if self.above is not None: if self.above != other.above: LOGGER.info("Above grains are different") self.above.debug_locate_difference(other.above) else: if other.above is not None: raise ValueError("Above grains are different") if self.below is not None: if self.below != other.below: LOGGER.info("Below grains are different") self.below.debug_locate_difference(other.below) else: if other.below is not None: raise ValueError("Below grains are different") LOGGER.info("Cannot find difference between image grain crops")
[docs] class Grains: """ Find grains in an image. Parameters ---------- image : npt.NDArray 2-D Numpy array of image. filename : str File being processed (used in logging). pixel_to_nm_scaling : float Scaling of pixels to nanometres. grain_crop_padding : int Padding to add to the bounding box of the grain during cropping. unet_config : dict[str, str | int | float | tuple[int | None, int, int, int] | None] Configuration for the UNet model. model_path: str Path to the UNet model. upper_norm_bound: float Upper bound for normalising the image. lower_norm_bound: float Lower bound for normalising the image. threshold_method : str Method for determining thershold to mask values, default is 'otsu'. otsu_threshold_multiplier : float Factor by which the below threshold is to be scaled prior to masking. threshold_std_dev : dict Dictionary of 'below' and 'above' factors by which standard deviation is multiplied to derive the threshold if threshold_method is 'std_dev'. threshold_absolute : dict Dictionary of absolute 'below' and 'above' thresholds for grain finding. absolute_area_threshold : dict Dictionary of above and below grain's area thresholds. direction : str Direction for which grains are to be detected, valid values are 'above', 'below' and 'both'. smallest_grain_size_nm2 : float Whether or not to remove grains that intersect the edge of the image. remove_edge_intersecting_grains : bool Direction for which grains are to be detected, valid values are 'above', 'below' and 'both'. classes_to_merge : list[tuple[int, int]] | None List of tuples of classes to merge. vetting : dict | None Dictionary of vetting parameters. """ # pylint: disable=too-many-locals def __init__( self, image: npt.NDArray, filename: str, pixel_to_nm_scaling: float, grain_crop_padding: int = 1, unet_config: dict[str, str | int | float | tuple[int | None, int, int, int] | None] | None = None, threshold_method: str | None = None, otsu_threshold_multiplier: float | None = None, threshold_std_dev: dict | None = None, threshold_absolute: dict | None = None, absolute_area_threshold: dict | None = None, direction: str | None = None, smallest_grain_size_nm2: float | None = None, remove_edge_intersecting_grains: bool = True, classes_to_merge: list[tuple[int, int]] | None = None, vetting: dict | None = None, ): """ Initialise the class. Parameters ---------- image : npt.NDArray 2-D Numpy array of image. filename : str File being processed (used in logging). pixel_to_nm_scaling : float Scaling of pixels to nanometres. grain_crop_padding : int Padding to add to the bounding box of grains during cropping. unet_config : dict[str, str | int | float | tuple[int | None, int, int, int] | None] Configuration for the UNet model which is a dictionary with the following keys and values. model_path : str Path to the UNet model. upper_norm_bound: float Upper bound for normalising the image. lower_norm_bound : float Lower bound for normalising the image. threshold_method : str Method for determining thershold to mask values, default is 'otsu'. otsu_threshold_multiplier : float Factor by which the below threshold is to be scaled prior to masking. threshold_std_dev : dict Dictionary of 'below' and 'above' factors by which standard deviation is multiplied to derive the threshold if threshold_method is 'std_dev'. threshold_absolute : dict Dictionary of absolute 'below' and 'above' thresholds for grain finding. absolute_area_threshold : dict Dictionary of above and below grain's area thresholds. direction : str Direction for which grains are to be detected, valid values are 'above', 'below' and 'both'. smallest_grain_size_nm2 : float Whether or not to remove grains that intersect the edge of the image. remove_edge_intersecting_grains : bool Direction for which grains are to be detected, valid values are 'above', 'below' and 'both'. classes_to_merge : list[tuple[int, int]] | None List of tuples of classes to merge. vetting : dict | None Dictionary of vetting parameters. """ if unet_config is None: unet_config = { "model_path": None, "grain_crop_padding": 0, "upper_norm_bound": 1.0, "lower_norm_bound": 0.0, } if absolute_area_threshold is None: absolute_area_threshold = {"above": [None, None], "below": [None, None]} self.image = image self.filename = filename self.pixel_to_nm_scaling = pixel_to_nm_scaling self.threshold_method = threshold_method self.otsu_threshold_multiplier = otsu_threshold_multiplier self.threshold_std_dev = threshold_std_dev self.threshold_absolute = threshold_absolute self.absolute_area_threshold = absolute_area_threshold # Only detect grains for the desired direction self.direction = [direction] if direction != "both" else ["above", "below"] self.smallest_grain_size_nm2 = smallest_grain_size_nm2 self.remove_edge_intersecting_grains = remove_edge_intersecting_grains self.thresholds: dict[str, float] | None = None self.images = { "mask_grains": None, "tidied_border": None, "tiny_objects_removed": None, "objects_removed": None, # "labelled_regions": None, # "coloured_regions": None, } self.directions = defaultdict() self.minimum_grain_size = None self.region_properties = defaultdict() self.bounding_boxes = defaultdict() self.grainstats = None self.grain_crop_padding = grain_crop_padding self.unet_config = unet_config self.vetting = vetting self.classes_to_merge = classes_to_merge # Hardcoded minimum pixel size for grains. This should not be able to be changed by the user as this is # determined by what is processable by the rest of the pipeline. self.minimum_grain_size_px = 10 self.minimum_bbox_size_px = 5 self.image_grain_crops = ImageGrainCrops( above=None, below=None, )
[docs] def tidy_border(self, image: npt.NDArray, **kwargs) -> npt.NDArray: """ Remove grains touching the border. Parameters ---------- image : npt.NDarray 2-D Numpy array representing the image. **kwargs Arguments passed to 'skimage.segmentation.clear_border(**kwargs)'. Returns ------- npt.NDarray 2-D Numpy array of image without objects touching the border. """ LOGGER.debug(f"[{self.filename}] : Tidying borders") return clear_border(image, **kwargs)
[docs] @staticmethod def label_regions(image: npt.NDArray, background: int = 0) -> npt.NDArray: """ Label regions. This method is used twice, once prior to removal of small regions and again afterwards which is why an image must be supplied rather than using 'self'. Parameters ---------- image : npt.NDArray 2-D Numpy array of image. background : int Value used to indicate background of image. Default = 0. Returns ------- npt.NDArray 2-D Numpy array of image with regions numbered. """ return morphology.label(image, background)
[docs] def calc_minimum_grain_size(self, image: npt.NDArray) -> float: """ Calculate the minimum grain size in pixels squared. Very small objects are first removed via thresholding before calculating the below extreme. Parameters ---------- image : npt.NDArray 2-D Numpy image from which to calculate the minimum grain size. Returns ------- float Minimum grains size in pixels squared. If there are areas a value of -1 is returned. """ region_properties = self.get_region_properties(image) grain_areas = np.array([grain.area for grain in region_properties]) if len(grain_areas > 0): # Exclude small objects less than a given threshold first grain_areas = grain_areas[ grain_areas >= threshold(grain_areas, method="otsu", otsu_threshold_multiplier=1.0) ] self.minimum_grain_size = np.median(grain_areas) - ( 1.5 * (np.quantile(grain_areas, 0.75) - np.quantile(grain_areas, 0.25)) ) else: self.minimum_grain_size = -1
[docs] def remove_noise(self, image: npt.NDArray, **kwargs) -> npt.NDArray: """ Remove noise which are objects smaller than the 'smallest_grain_size_nm2'. This ensures that the smallest objects ~1px are removed regardless of the size distribution of the grains. Parameters ---------- image : npt.NDArray 2-D Numpy array to be cleaned. **kwargs Arguments passed to 'skimage.morphology.remove_small_objects(**kwargs)'. Returns ------- npt.NDArray 2-D Numpy array of image with objects < smallest_grain_size_nm2 removed. """ LOGGER.debug( f"[{self.filename}] : Removing noise (< {self.smallest_grain_size_nm2} nm^2" "{self.smallest_grain_size_nm2 / (self.pixel_to_nm_scaling**2):.2f} px^2)" ) return morphology.remove_small_objects( image, min_size=self.smallest_grain_size_nm2 / (self.pixel_to_nm_scaling**2), **kwargs )
[docs] def remove_small_objects(self, image: np.array, **kwargs) -> npt.NDArray: """ Remove small objects from the input image. Threshold determined by the minimum grain size, in pixels squared, of the classes initialisation. Parameters ---------- image : np.array 2-D Numpy array to remove small objects from. **kwargs Arguments passed to 'skimage.morphology.remove_small_objects(**kwargs)'. Returns ------- npt.NDArray 2-D Numpy array of image with objects < minimumm_grain_size removed. """ # If self.minimum_grain_size is -1, then this means that # there were no grains to calculate the minimum grian size from. if self.minimum_grain_size != -1: small_objects_removed = morphology.remove_small_objects( image.astype(bool), min_size=self.minimum_grain_size, # minimum_grain_size is in pixels squared **kwargs, ) LOGGER.debug( f"[{self.filename}] : Removed small objects (< \ {self.minimum_grain_size} px^2 / {self.minimum_grain_size / (self.pixel_to_nm_scaling) ** 2} nm^2)" ) return small_objects_removed > 0.0 return image
[docs] def remove_objects_too_small_to_process( self, image: npt.NDArray, minimum_size_px: int, minimum_bbox_size_px: int ) -> npt.NDArray[np.bool_]: """ Remove objects whose dimensions in pixels are too small to process. Parameters ---------- image : npt.NDArray 2-D Numpy array of image. minimum_size_px : int Minimum number of pixels for an object. minimum_bbox_size_px : int Limit for the minimum dimension of an object in pixels. Eg: 5 means the object's bounding box must be at least 5x5. Returns ------- npt.NDArray 2-D Numpy array of image with objects removed that are too small to process. """ labelled_image = label(image) region_properties = self.get_region_properties(labelled_image) for region in region_properties: # If the number of true pixels in the region is less than the minimum number of pixels, remove the region if region.area < minimum_size_px: labelled_image[labelled_image == region.label] = 0 bbox_width = region.bbox[2] - region.bbox[0] bbox_height = region.bbox[3] - region.bbox[1] # If the minimum dimension of the bounding box is less than the minimum dimension, remove the region if min(bbox_width, bbox_height) < minimum_bbox_size_px: labelled_image[labelled_image == region.label] = 0 return labelled_image.astype(bool)
[docs] def area_thresholding(self, image: npt.NDArray, area_thresholds: tuple) -> npt.NDArray: """ Remove objects larger and smaller than the specified thresholds. Parameters ---------- image : npt.NDArray Image array where the background == 0 and grains are labelled as integers >0. area_thresholds : tuple List of area thresholds (in nanometres squared, not pixels squared), first is the lower limit for size, second is the upper. Returns ------- npt.NDArray Array with small and large objects removed. """ image_cp = image.copy() lower_size_limit, upper_size_limit = area_thresholds # if one value is None adjust for comparison if upper_size_limit is None: upper_size_limit = image.size * self.pixel_to_nm_scaling**2 if lower_size_limit is None: lower_size_limit = 0 # Get array of grain numbers (discounting zero) uniq = np.delete(np.unique(image), 0) grain_count = 0 LOGGER.debug( f"[{self.filename}] : Area thresholding grains | Thresholds: L: {(lower_size_limit / self.pixel_to_nm_scaling**2):.2f}," f"U: {(upper_size_limit / self.pixel_to_nm_scaling**2):.2f} px^2, L: {lower_size_limit:.2f}, U: {upper_size_limit:.2f} nm^2." ) for grain_no in uniq: # Calculate grian area in nm^2 grain_area = np.sum(image_cp == grain_no) * (self.pixel_to_nm_scaling**2) # Compare area in nm^2 to area thresholds if grain_area > upper_size_limit or grain_area < lower_size_limit: image_cp[image_cp == grain_no] = 0 else: grain_count += 1 image_cp[image_cp == grain_no] = grain_count return image_cp
[docs] def colour_regions(self, image: npt.NDArray, **kwargs) -> npt.NDArray: """ Colour the regions. Parameters ---------- image : npt.NDArray 2-D array of labelled regions to be coloured. **kwargs Arguments passed to 'skimage.color.label2rgb(**kwargs)'. Returns ------- np.array Numpy array of image with objects coloured. """ coloured_regions = label2rgb(image, **kwargs) LOGGER.debug(f"[{self.filename}] : Coloured regions") return coloured_regions
[docs] @staticmethod def get_region_properties(image: np.array, **kwargs) -> list: """ Extract the properties of each region. Parameters ---------- image : np.array Numpy array representing image. **kwargs : Arguments passed to 'skimage.measure.regionprops(**kwargs)'. Returns ------- list List of region property objects. """ return regionprops(image, **kwargs)
[docs] def get_bounding_boxes(self, direction: str) -> dict: """ Derive a list of bounding boxes for each region from the derived region_properties. Parameters ---------- direction : str Direction of threshold for which bounding boxes are being calculated. Returns ------- dict Dictionary of bounding boxes indexed by region area. """ return {region.area: region.area_bbox for region in self.region_properties[direction]}
# Sylvia: This function is more readable and easier to work on if we don't split it up into smaller functions. # pylint: disable=too-many-branches # pylint: disable=too-many-statements
[docs] def find_grains(self) -> None: """Find grains.""" LOGGER.debug(f"[{self.filename}] : Thresholding method (grains) : {self.threshold_method}") self.thresholds = get_thresholds( image=self.image, threshold_method=self.threshold_method, otsu_threshold_multiplier=self.otsu_threshold_multiplier, threshold_std_dev=self.threshold_std_dev, absolute=self.threshold_absolute, ) # Create an ImageGrainCrops object to store the grain crops image_grain_crops = ImageGrainCrops(above=None, below=None) for direction in self.direction: LOGGER.debug(f"[{self.filename}] : Finding {direction} grains, threshold: ({self.thresholds[direction]})") self.directions[direction] = {} self.directions[direction]["mask_grains"] = _get_mask( self.image, thresh=self.thresholds[direction], threshold_direction=direction, img_name=self.filename, ) self.directions[direction]["labelled_regions_01"] = self.label_regions( self.directions[direction]["mask_grains"] ) if self.remove_edge_intersecting_grains: self.directions[direction]["tidied_border"] = self.tidy_border( self.directions[direction]["labelled_regions_01"] ) else: self.directions[direction]["tidied_border"] = self.directions[direction]["labelled_regions_01"] LOGGER.debug(f"[{self.filename}] : Removing noise ({direction})") self.directions[direction]["removed_noise"] = self.area_thresholding( self.directions[direction]["tidied_border"], [self.smallest_grain_size_nm2, None], ) LOGGER.debug(f"[{self.filename}] : Removing small / large grains ({direction})") # if no area thresholds specified, use otsu if self.absolute_area_threshold[direction].count(None) == 2: self.calc_minimum_grain_size(self.directions[direction]["removed_noise"]) self.directions[direction]["removed_small_objects"] = self.remove_small_objects( self.directions[direction]["removed_noise"] ) else: self.directions[direction]["removed_small_objects"] = self.area_thresholding( self.directions[direction]["removed_noise"], self.absolute_area_threshold[direction], ) self.directions[direction]["removed_objects_too_small_to_process"] = ( self.remove_objects_too_small_to_process( image=self.directions[direction]["removed_small_objects"], minimum_size_px=self.minimum_grain_size_px, minimum_bbox_size_px=self.minimum_bbox_size_px, ) ) self.directions[direction]["labelled_regions_02"] = self.label_regions( self.directions[direction]["removed_objects_too_small_to_process"] ) self.region_properties[direction] = self.get_region_properties( self.directions[direction]["labelled_regions_02"] ) LOGGER.debug(f"[{self.filename}] : Region properties calculated ({direction})") self.bounding_boxes[direction] = self.get_bounding_boxes(direction=direction) LOGGER.debug(f"[{self.filename}] : Extracted bounding boxes ({direction})") # If there are no grains, then later steps will fail, so skip the stages if no grains are found. if len(self.region_properties[direction]) > 0: # Grains found # Create a tensor out of the grain mask of shape NxNx2, where the two classes are a binary background # mask and the second is a binary grain mask. This is because we want to support multiple classes, and # so we standardise so that the first layer is background mask, then feature mask 1, then feature mask # 2 etc. # Get a binary mask where 1s are background and 0s are grains labelled_regions_background_mask = np.where( self.directions[direction]["labelled_regions_02"] == 0, 1, 0 ) # Create a tensor out of the background and foreground masks full_mask_tensor = np.stack( [ labelled_regions_background_mask, self.directions[direction]["labelled_regions_02"], ], axis=-1, ).astype(np.int32) # Extract tensor mask crops of each grain. graincrops = self.extract_grains_from_full_image_tensor( image=self.image, full_mask_tensor=full_mask_tensor, padding=self.grain_crop_padding, pixel_to_nm_scaling=self.pixel_to_nm_scaling, filename=self.filename, ) # Optionally run a user-supplied u-net model on the grains to improve the segmentation if self.unet_config["model_path"] is not None: # Run unet segmentation on only the class 1 layer of the labelled_regions_02. Need to make this configurable # later on along with all the other hardcoded class 1s. graincrops = Grains.improve_grain_segmentation_unet( filename=self.filename, direction=direction, unet_config=self.unet_config, graincrops=graincrops, ) # Construct full masks from the crops full_mask_tensor = Grains.construct_full_mask_from_graincrops( graincrops=graincrops, image_shape=self.image.shape, ) # Set the unet tensor regardless of if the unet model was run, since the plotting expects it # can be changed when we do a plotting overhaul self.directions[direction]["unet_tensor"] = full_mask_tensor # Vet the grains if self.vetting is not None: graincrops_vetted = Grains.vet_grains( graincrops=graincrops, **self.vetting, ) else: graincrops_vetted = graincrops graincrops_vetted = Grains.graincrops_update_background_class(graincrops=graincrops_vetted) full_mask_tensor_vetted = Grains.construct_full_mask_from_graincrops( graincrops=graincrops_vetted, image_shape=self.image.shape, ) self.directions[direction]["vetted_tensor"] = full_mask_tensor_vetted # Mandatory check to remove any objects in any classes that are too small to process graincrops_removed_too_small_to_process = Grains.graincrops_remove_objects_too_small_to_process( graincrops=graincrops_vetted, min_object_size=self.minimum_grain_size_px, min_object_bbox_size=self.minimum_bbox_size_px, ) graincrops_removed_too_small_to_process = Grains.graincrops_update_background_class( graincrops=graincrops_removed_too_small_to_process ) # Merge classes as specified by the user graincrops_merged_classes = Grains.graincrops_merge_classes( graincrops=graincrops_removed_too_small_to_process, classes_to_merge=self.classes_to_merge, ) graincrops_merged_classes = Grains.graincrops_update_background_class( graincrops=graincrops_merged_classes ) full_mask_tensor_merged_classes = Grains.construct_full_mask_from_graincrops( graincrops=graincrops_merged_classes, image_shape=self.image.shape, ) self.directions[direction]["merged_classes_tensor"] = full_mask_tensor_merged_classes # Store the grain crops if direction == "above": image_grain_crops.above = GrainCropsDirection( crops=graincrops_merged_classes, full_mask_tensor=full_mask_tensor_merged_classes, ) elif direction == "below": image_grain_crops.below = GrainCropsDirection( crops=graincrops_merged_classes, full_mask_tensor=full_mask_tensor_merged_classes, ) else: raise ValueError(f"Invalid direction: {direction}. Allowed values are 'above' and 'below'") self.image_grain_crops = image_grain_crops else: # No grains found self.image_grain_crops = ImageGrainCrops(above=None, below=None)
# pylint: disable=too-many-locals
[docs] @staticmethod def improve_grain_segmentation_unet( graincrops: dict[int, GrainCrop], filename: str, direction: str, unet_config: dict[str, str | int | float | tuple[int | None, int, int, int] | None], ) -> dict[int, GrainCrop]: """ Use a UNet model to re-segment existing grains to improve their accuracy. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. filename : str File being processed (used in logging). direction : str Direction of threshold for which bounding boxes are being calculated. unet_config : dict[str, str | int | float | tuple[int | None, int, int, int] | None] Configuration for the UNet model. model_path: str Path to the UNet model. grain_crop_padding: int Padding to add to the bounding box of the grain before cropping. upper_norm_bound: float Upper bound for normalising the image. lower_norm_bound: float Lower bound for normalising the image. Returns ------- dict[int, GrainCrop] Dictionary of (hopefully) improved grain crops. """ LOGGER.debug(f"[{filename}] : Running UNet model on {direction} grains") # When debugging, you might find that the custom_objects are incorrect. This is entirely based on what the model used # for its loss during training and so this will need to be changed a lot. # Once the group has gotten used to training models, this can be made configurable, but currently it's too changeable. # unet_model = keras.models.load_model( # self.unet_config["model_path"], custom_objects={"dice_loss": dice_loss, "iou_loss": iou_loss} # ) # You may also get an error referencing a "group_1" parameter, this is discussed in this issue: # https://github.com/keras-team/keras/issues/19441 which also has an experimental fix that we can try but # I haven't tested it yet. try: unet_model = keras.models.load_model( unet_config["model_path"], custom_objects={"mean_iou": mean_iou, "iou_loss": iou_loss}, compile=False ) except Exception as e: LOGGER.debug(f"Python executable: {sys.executable}") LOGGER.debug(f"Keras version: {keras.__version__}") LOGGER.debug(f"Model path: {unet_config['model_path']}") raise e # unet_model = keras.models.load_model(unet_config["model_path"], custom_objects={"mean_iou": mean_iou}) LOGGER.debug(f"Output shape of UNet model: {unet_model.output_shape}") new_graincrops: dict[int, GrainCrop] = {} num_empty_removed_grains = 0 for grain_number, graincrop in graincrops.items(): LOGGER.debug(f"Unet predicting mask for grain {grain_number} of {len(graincrops)}") # Run the UNet on the region. This is allowed to be a single channel # as we can add a background channel afterwards if needed. # Remember that this region is cropped from the original image, so it's not # the same size as the original image. predicted_mask = predict_unet( image=graincrop.image, model=unet_model, confidence=0.1, model_input_shape=unet_model.input_shape, upper_norm_bound=unet_config["upper_norm_bound"], lower_norm_bound=unet_config["lower_norm_bound"], ) assert len(predicted_mask.shape) == 3 LOGGER.debug(f"Predicted mask shape: {predicted_mask.shape}") if unet_config["remove_disconnected_grains"]: # Remove grains that are not connected to the original grain original_grain_mask = graincrop.mask predicted_mask = Grains.remove_disconnected_grains( original_grain_tensor=original_grain_mask, predicted_grain_tensor=predicted_mask, ) # Check if all of the non-background classes are empty if np.sum(predicted_mask[:, :, 1:]) == 0: num_empty_removed_grains += 1 else: new_graincrops[grain_number] = GrainCrop( image=graincrop.image, mask=predicted_mask, padding=graincrop.padding, bbox=graincrop.bbox, pixel_to_nm_scaling=graincrop.pixel_to_nm_scaling, filename=graincrop.filename, height_profiles=None, stats=None, ) LOGGER.debug(f"Number of empty removed grains: {num_empty_removed_grains}") return new_graincrops
[docs] @staticmethod def keep_largest_labelled_region( labelled_image: npt.NDArray[np.int32], ) -> npt.NDArray[np.bool_]: """ Keep only the largest region in a labelled image. Parameters ---------- labelled_image : npt.NDArray 2-D Numpy array of labelled regions. Returns ------- npt.NDArray 2-D Numpy boolean array of labelled regions with only the largest region. """ # Check if there are any labelled regions if labelled_image.max() == 0: return np.zeros_like(labelled_image).astype(np.bool_) # Get the sizes of the regions sizes = np.array([(labelled_image == label).sum() for label in range(1, labelled_image.max() + 1)]) # Keep only the largest region return np.where(labelled_image == sizes.argmax() + 1, labelled_image, 0).astype(bool)
[docs] @staticmethod def flatten_multi_class_tensor(grain_mask_tensor: npt.NDArray) -> npt.NDArray: """ Flatten a multi-class image tensor to a single binary mask. The returned tensor is of boolean type in case there are multiple hits in the same pixel. We dont want to have 2s, 3s etc because this would cause issues in labelling and cause erroneous grains within grains. Parameters ---------- grain_mask_tensor : npt.NDArray Multi class grain mask tensor tensor of shape (N, N, C). Returns ------- npt.NDArray Combined binary mask of all but the background class (:, :, 0). """ assert len(grain_mask_tensor.shape) == 3, f"Tensor not 3D: {grain_mask_tensor.shape}" return np.sum(grain_mask_tensor[:, :, 1:], axis=-1).astype(bool)
[docs] @staticmethod def get_multi_class_grain_bounding_boxes(grain_mask_tensor: npt.NDArray) -> dict: """ Get the bounding boxes for each grain in a multi-class image tensor. Finds the bounding boxes for each grain in a multi-class image tensor. Grains can span multiple classes, so the bounding boxes are found for the combined binary mask of contiguous grains across all classes. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of grain mask tensor. Returns ------- dict Dictionary of bounding boxes indexed by grain number. """ flattened_mask = Grains.flatten_multi_class_tensor(grain_mask_tensor) labelled_regions = Grains.label_regions(flattened_mask) region_properties = Grains.get_region_properties(labelled_regions) bounding_boxes = {index: region.bbox for index, region in enumerate(region_properties)} return { index: pad_bounding_box( crop_min_row=bbox[0], crop_min_col=bbox[1], crop_max_row=bbox[2], crop_max_col=bbox[3], image_shape=(grain_mask_tensor.shape[0], grain_mask_tensor.shape[1]), padding=1, ) for index, bbox in bounding_boxes.items() }
[docs] @staticmethod def update_background_class( grain_mask_tensor: npt.NDArray, ) -> npt.NDArray[np.bool_]: """ Update the background class to reflect the other classes. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. Returns ------- npt.NDArray 3-D Numpy array of image tensor with updated background class. """ flattened_mask = Grains.flatten_multi_class_tensor(grain_mask_tensor) new_background = np.where(flattened_mask == 0, 1, 0) grain_mask_tensor[:, :, 0] = new_background return grain_mask_tensor.astype(bool)
[docs] @staticmethod def vet_class_sizes_single_grain( single_grain_mask_tensor: npt.NDArray, pixel_to_nm_scaling: float, class_size_thresholds: list[tuple[int, int, int]] | None, ) -> tuple[npt.NDArray, bool]: """ Remove regions of particular classes based on size thresholds. Regions of classes that are too large or small may need to be removed for many reasons (eg removing noise erroneously detected by the model or larger-than-expected molecules that are obviously erroneous), this method allows for the removal of these regions based on size thresholds. Parameters ---------- single_grain_mask_tensor : npt.NDArray 3-D Numpy array of the mask tensor. pixel_to_nm_scaling : float Scaling of pixels to nanometres. class_size_thresholds : list[list[int, int, int]] | None List of class size thresholds. Structure is [(class_index, lower, upper)]. Returns ------- npt.NDArray 3-D Numpy array of the mask tensor with grains removed based on size thresholds. bool True if the grain passes the vetting, False if it fails. """ if class_size_thresholds is None: return single_grain_mask_tensor, True # Iterate over the classes and check the sizes for class_index in range(1, single_grain_mask_tensor.shape[2]): class_size = np.sum(single_grain_mask_tensor[:, :, class_index]) * pixel_to_nm_scaling**2 # Check the size against the thresholds classes_to_vet = [vetting_criteria[0] for vetting_criteria in class_size_thresholds] if class_index not in classes_to_vet: continue lower_threshold, upper_threshold = [ vetting_criteria[1:] for vetting_criteria in class_size_thresholds if vetting_criteria[0] == class_index ][0] if lower_threshold is not None: if class_size < lower_threshold: # Return empty tensor empty_crop_tensor = np.zeros_like(single_grain_mask_tensor) # Fill the background class with 1s empty_crop_tensor[:, :, 0] = 1 return empty_crop_tensor, False if upper_threshold is not None: if class_size > upper_threshold: # Return empty tensor empty_crop_tensor = np.zeros_like(single_grain_mask_tensor) # Fill the background class with 1s empty_crop_tensor[:, :, 0] = 1 return empty_crop_tensor, False return single_grain_mask_tensor, True
[docs] @staticmethod def get_individual_grain_crops( grain_mask_tensor: npt.NDArray, padding: int = 1, ) -> tuple[list[npt.NDArray], list[npt.NDArray], int]: """ Get individual grain crops from an image tensor. Fetches individual grain crops from an image tensor, but zeros any non-connected grains in the crop region. This is to ensure that other grains do not affect further processing steps. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of image tensor. padding : int Padding to add to the bounding box of the grain before cropping. Default is 1. Returns ------- list[npt.NDArray] List of individual grain crops. list[npt.NDArray] List of bounding boxes for each grain. int Padding used for the bounding boxes. """ grain_crops = [] bounding_boxes = [] # Label the regions flattened_multi_class_mask = Grains.flatten_multi_class_tensor(grain_mask_tensor) labelled_regions = Grains.label_regions(flattened_multi_class_mask) # Iterate over the regions and return the crop, but zero any non-connected grains for region in Grains.get_region_properties(labelled_regions): binary_labelled_regions = labelled_regions == region.label # Zero any non-connected grains # For each class, set all pixels to zero that are not in the current region this_region_only_grain_tensor = np.copy(grain_mask_tensor) # Iterate over the non-background classes for class_index in range(1, grain_mask_tensor.shape[2]): # Set all pixels to zero that are not in the current region this_region_only_grain_tensor[:, :, class_index] = ( binary_labelled_regions * grain_mask_tensor[:, :, class_index] ) # Update background class to reflect the removal of any non-connected grains this_region_only_grain_tensor = Grains.update_background_class( grain_mask_tensor=this_region_only_grain_tensor ) # Get the bounding box bounding_box = region.bbox # Pad the bounding box bounding_box = pad_bounding_box( crop_min_row=bounding_box[0], crop_min_col=bounding_box[1], crop_max_row=bounding_box[2], crop_max_col=bounding_box[3], image_shape=(grain_mask_tensor.shape[0], grain_mask_tensor.shape[1]), padding=padding, ) # Crop the grain grain_crop = this_region_only_grain_tensor[ bounding_box[0] : bounding_box[2], bounding_box[1] : bounding_box[3], :, ] # Add the crop to the list grain_crops.append(grain_crop.astype(bool)) bounding_boxes.append(bounding_box) return grain_crops, bounding_boxes, padding
[docs] @staticmethod def vet_numbers_of_regions_single_grain( grain_mask_tensor: npt.NDArray, class_region_number_thresholds: list[tuple[int, int, int]] | None, ) -> tuple[npt.NDArray, bool]: """ Check if the number of regions of different classes for a single grain is within thresholds. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor, should be of only one grain. class_region_number_thresholds : list[list[int, int, int]] List of class region number thresholds. Structure is [(class_index, lower, upper)]. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor with grains removed based on region number thresholds. bool True if the grain passes the vetting, False if it fails. """ if class_region_number_thresholds is None: return grain_mask_tensor, True # Iterate over the classes and check the number of regions for class_index in range(1, grain_mask_tensor.shape[2]): # Get the number of regions class_labelled_regions = Grains.label_regions(grain_mask_tensor[:, :, class_index]) number_of_regions = np.unique(class_labelled_regions).shape[0] - 1 # Check the number of regions against the thresholds, skip if no thresholds provided # Get the classes we are trying to vet (the first element of each tuple) classes_to_vet = [vetting_criteria[0] for vetting_criteria in class_region_number_thresholds] if class_index not in classes_to_vet: continue lower_threshold, upper_threshold = [ vetting_criteria[1:] for vetting_criteria in class_region_number_thresholds if vetting_criteria[0] == class_index ][0] # Check the number of regions against the thresholds if lower_threshold is not None: if number_of_regions < lower_threshold: # Return empty tensor empty_crop_tensor = np.zeros_like(grain_mask_tensor) # Fill the background class with 1s empty_crop_tensor[:, :, 0] = 1 return empty_crop_tensor, False if upper_threshold is not None: if number_of_regions > upper_threshold: # Return empty tensor empty_crop_tensor = np.zeros_like(grain_mask_tensor) # Fill the background class with 1s empty_crop_tensor[:, :, 0] = 1 return empty_crop_tensor, False return grain_mask_tensor, True
[docs] @staticmethod def convert_classes_to_nearby_classes( grain_mask_tensor: npt.NDArray, classes_to_convert: list[tuple[int, int]] | None, class_touching_threshold: int = 1, ) -> npt.NDArray: """ Convert all but the largest regions of one class into another class provided the former touches the latter. Specifically, it takes a list of tuples of two integers (dubbed class A and class B). For each class A, class B pair, it will find the largest region of class A and flag it to be ignored. Then for each non-largest region of class A, it will check if it touches any class B region (within the ``class_touching_threshold`` distance). If it does, it will convert the region to class B. This is useful for situations where you want just one region of class A and the model has a habit of producing small regions of class A interspersed in the class B regions, which should be class B instead. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. classes_to_convert : list List of tuples of classes to convert. Structure is [(class_a, class_b)]. class_touching_threshold : int Number of dilation passes to do to determine class A connectivity with class B. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor with classes converted. """ # If no classes to convert, return the original tensor if not classes_to_convert: return grain_mask_tensor # Iterate over class pairs for class_a, class_b in classes_to_convert: # Get the binary mask for class A and class B class_a_mask = grain_mask_tensor[:, :, class_a] class_b_mask = grain_mask_tensor[:, :, class_b] # Skip if no regions of class A if np.max(class_a_mask) == 0: continue # Find the largest region of class A class_a_labelled_regions = Grains.label_regions(class_a_mask) class_a_region_properties = Grains.get_region_properties(class_a_labelled_regions) class_a_areas = [region.area for region in class_a_region_properties] largest_class_a_region = class_a_region_properties[np.argmax(class_a_areas)] # For all other regions, check if they touch the class B region for region in class_a_region_properties: if region.label == largest_class_a_region.label: continue # Get only the pixels in the region region_mask = class_a_labelled_regions == region.label # Dilate the region dilated_region_mask = region_mask for _ in range(class_touching_threshold): dilated_region_mask = binary_dilation(dilated_region_mask) # Get the intersection with the class B mask intersection = dilated_region_mask & class_b_mask # If there is any intersection, turn the region into class B if np.any(intersection): # Add to the class B mask class_b_mask = np.where(region_mask, class_b, class_b_mask) # Remove from the class A mask class_a_mask = np.where(region_mask, 0, class_a_mask) # Update the tensor grain_mask_tensor[:, :, class_a] = class_a_mask grain_mask_tensor[:, :, class_b] = class_b_mask return grain_mask_tensor.astype(bool)
[docs] @staticmethod def keep_largest_labelled_region_classes( single_grain_mask_tensor: npt.NDArray, keep_largest_labelled_regions_classes: list[int] | None, ) -> npt.NDArray: """ Keep only the largest region in specific classes. Parameters ---------- single_grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. keep_largest_labelled_regions_classes : list[int] List of classes to keep only the largest region. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor with only the largest regions in specific classes. """ if keep_largest_labelled_regions_classes is None: return single_grain_mask_tensor # Iterate over the classes for class_index in keep_largest_labelled_regions_classes: # Get the binary mask for the class class_mask = single_grain_mask_tensor[:, :, class_index] # Skip if no regions if np.max(class_mask) == 0: continue # Label the regions labelled_regions = Grains.label_regions(class_mask) # Get the region properties region_properties = Grains.get_region_properties(labelled_regions) # Get the region areas region_areas = [region.area for region in region_properties] # Keep only the largest region largest_region = region_properties[np.argmax(region_areas)] class_mask_largest_only = np.where(labelled_regions == largest_region.label, labelled_regions, 0) # Update the tensor single_grain_mask_tensor[:, :, class_index] = class_mask_largest_only.astype(bool) # Update the background class return Grains.update_background_class(single_grain_mask_tensor)
[docs] @staticmethod def calculate_region_connection_regions( grain_mask_tensor: npt.NDArray, classes: tuple[int, int], ) -> tuple[int, npt.NDArray, dict[int, npt.NDArray[int]]]: """ Get a list of connection regions between two classes. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. classes : tuple[int, int] Tuple pair of classes to calculate the connection regions. Returns ------- int Number of connection regions. npt.NDArray 2-D Numpy array of the intersection labels. dict Dictionary of connection points indexed by region label. """ # Get the binary masks for the classes class_a_mask = grain_mask_tensor[:, :, classes[0]] class_b_mask = grain_mask_tensor[:, :, classes[1]] # Dilate class A mask dilated_class_a_mask = binary_dilation(class_a_mask) # Get the intersection with the class B mask intersection = dilated_class_a_mask & class_b_mask # Get number of separate intersection regions intersection_labels = label(intersection) intersection_regions = regionprops(intersection_labels) num_connection_regions = len(intersection_regions) # Create a dictionary of the connection points intersection_points = {region.label: region.coords for region in intersection_regions} return num_connection_regions, intersection_labels, intersection_points
[docs] @staticmethod def vet_class_connection_points( grain_mask_tensor: npt.NDArray, class_connection_point_thresholds: list[tuple[tuple[int, int], tuple[int, int]]] | None, ) -> bool: """ Vet the number of connection points between regions in specific classes. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. class_connection_point_thresholds : list[tuple[tuple[int, int], tuple[int, int]]] | None List of tuples of classes and connection point thresholds. Structure is [(class_pair, (lower, upper))]. Returns ------- bool True if the grain passes the vetting, False if it fails. """ if class_connection_point_thresholds is None: return True # Iterate over the class pairs for class_pair, connection_point_thresholds in class_connection_point_thresholds: # Get the connection regions num_connection_regions, _, _ = Grains.calculate_region_connection_regions( grain_mask_tensor=grain_mask_tensor, classes=class_pair, ) # Check the number of connection regions against the thresholds lower_threshold, upper_threshold = connection_point_thresholds if lower_threshold is not None: if num_connection_regions < lower_threshold: return False if upper_threshold is not None: if num_connection_regions > upper_threshold: return False return True
[docs] @staticmethod def assemble_grain_mask_tensor_from_crops( grain_mask_tensor_shape: tuple[int, int, int], grain_crops_and_bounding_boxes: list[dict[str, npt.NDArray]], ) -> npt.NDArray: """ Combine individual grain crops into a single grain mask tensor. Parameters ---------- grain_mask_tensor_shape : tuple Shape of the grain mask tensor. grain_crops_and_bounding_boxes : list List of dictionaries containing the grain crops and bounding boxes. Structure: [{"grain_tensor": npt.NDArray, "bounding_box": tuple, "padding": int}]. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor. """ # Initialise the grain mask tensor grain_mask_tensor = np.zeros(grain_mask_tensor_shape).astype(np.int32) # Iterate over the grain crops for grain_crop_and_bounding_box in grain_crops_and_bounding_boxes: # Get the grain crop and bounding box grain_crop = grain_crop_and_bounding_box["grain_tensor"] bounding_box = grain_crop_and_bounding_box["bounding_box"] padding = grain_crop_and_bounding_box["padding"] # Get the bounding box coordinates min_row, min_col, max_row, max_col = bounding_box # Crop the grain cropped_grain = grain_crop[ padding:-padding, padding:-padding, :, ] # Update the grain mask tensor grain_mask_tensor[min_row + padding : max_row - padding, min_col + padding : max_col - padding, :] = ( np.maximum( grain_mask_tensor[min_row + padding : max_row - padding, min_col + padding : max_col - padding, :], cropped_grain, ) ) # Update the background class grain_mask_tensor = Grains.update_background_class(grain_mask_tensor) return grain_mask_tensor.astype(bool)
# Ignore too complex, to break the function down into smaller functions would make it more complex. # ruff: noqa: C901
[docs] @staticmethod def convert_classes_when_too_big_or_small( grain_mask_tensor: npt.NDArray, pixel_to_nm_scaling: float, class_conversion_size_thresholds: list[tuple[tuple[int, int, int], tuple[int, int]]] | None, ) -> npt.NDArray: """ Convert classes when they are too big or too small based on size thresholds. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. pixel_to_nm_scaling : float Scaling of pixels to nanometres. class_conversion_size_thresholds : list List of class conversion size thresholds. Structure is [(class_index, class_to_convert_to_if_to_small, class_to_convert_to_if_too_big), (lower_threshold, upper_threshold)]. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor with classes converted based on size thresholds. """ if class_conversion_size_thresholds is None: return grain_mask_tensor new_grain_mask_tensor = np.copy(grain_mask_tensor) classes_to_vet = [vetting_criteria[0][0] for vetting_criteria in class_conversion_size_thresholds] for class_index in range(1, grain_mask_tensor.shape[2]): if class_index not in classes_to_vet: continue lower_threshold, upper_threshold = [ vetting_criteria[1] for vetting_criteria in class_conversion_size_thresholds if vetting_criteria[0][0] == class_index ][0] class_to_convert_to_if_too_small, class_to_convert_to_if_too_big = [ vetting_criteria[0][1:] for vetting_criteria in class_conversion_size_thresholds if vetting_criteria[0][0] == class_index ][0] # For each region in the class, check its size and convert if needed labelled_regions = Grains.label_regions(grain_mask_tensor[:, :, class_index]) region_properties = Grains.get_region_properties(labelled_regions) for region in region_properties: region_mask = labelled_regions == region.label region_size = np.sum(region_mask) * pixel_to_nm_scaling**2 if lower_threshold is not None: if region_size < lower_threshold: if class_to_convert_to_if_too_small is not None: # Add the region to the class to convert to in the new tensor new_grain_mask_tensor[:, :, class_to_convert_to_if_too_small] = np.where( region_mask, class_to_convert_to_if_too_small, new_grain_mask_tensor[:, :, class_to_convert_to_if_too_small], ) # Remove the region from the original class new_grain_mask_tensor[:, :, class_index] = np.where( region_mask, 0, new_grain_mask_tensor[:, :, class_index], ) if upper_threshold is not None: if region_size > upper_threshold: if class_to_convert_to_if_too_big is not None: # Add the region to the class to convert to in the new tensor new_grain_mask_tensor[:, :, class_to_convert_to_if_too_big] = np.where( region_mask, class_to_convert_to_if_too_big, new_grain_mask_tensor[:, :, class_to_convert_to_if_too_big], ) # Remove the region from the original class new_grain_mask_tensor[:, :, class_index] = np.where( region_mask, 0, new_grain_mask_tensor[:, :, class_index], ) # Update the background class new_grain_mask_tensor = Grains.update_background_class(new_grain_mask_tensor) return new_grain_mask_tensor.astype(bool)
[docs] @staticmethod def vet_grains( graincrops: dict[int, GrainCrop], class_conversion_size_thresholds: list[tuple[tuple[int, int, int], tuple[int, int]]] | None, class_size_thresholds: list[tuple[int, int, int]] | None, class_region_number_thresholds: list[tuple[int, int, int]] | None, nearby_conversion_classes_to_convert: list[tuple[int, int]] | None, class_touching_threshold: int, keep_largest_labelled_regions_classes: list[int] | None, class_connection_point_thresholds: list[tuple[tuple[int, int], tuple[int, int]]] | None, ) -> dict[int, GrainCrop]: """ Vet grains in a grain mask tensor based on a variety of criteria. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. class_conversion_size_thresholds : list List of class conversion size thresholds. Structure is [(class_index, class_to_convert_to_if_too_small, class_to_convert_to_if_too_big), (lower_threshold, upper_threshold)]. class_size_thresholds : list List of class size thresholds. Structure is [(class_index, lower, upper)]. class_region_number_thresholds : list List of class region number thresholds. Structure is [(class_index, lower, upper)]. nearby_conversion_classes_to_convert : list List of tuples of classes to convert. Structure is [(class_a, class_b)]. class_touching_threshold : int Number of dilation passes to do to determine class A connectivity with class B. keep_largest_labelled_regions_classes : list List of classes to keep only the largest region. class_connection_point_thresholds : list List of tuples of classes and connection point thresholds. Structure is [(class_pair, (lower, upper))]. Returns ------- dict[int, GrainCrop] Dictionary of grain crops that passed the vetting. """ passed_graincrops: dict[int, GrainCrop] = {} # Iterate over the grain crops for grain_number, graincrop in graincrops.items(): single_grain_mask_tensor = graincrop.mask pixel_to_nm_scaling = graincrop.pixel_to_nm_scaling # Convert small / big areas to other classes single_grain_mask_tensor = Grains.convert_classes_when_too_big_or_small( grain_mask_tensor=single_grain_mask_tensor, pixel_to_nm_scaling=pixel_to_nm_scaling, class_conversion_size_thresholds=class_conversion_size_thresholds, ) # Vet number of regions (foreground and background) _, passed = Grains.vet_numbers_of_regions_single_grain( grain_mask_tensor=single_grain_mask_tensor, class_region_number_thresholds=class_region_number_thresholds, ) if not passed: continue # Vet size of regions (foreground and background) _, passed = Grains.vet_class_sizes_single_grain( single_grain_mask_tensor=single_grain_mask_tensor, pixel_to_nm_scaling=pixel_to_nm_scaling, class_size_thresholds=class_size_thresholds, ) if not passed: continue # Turn all but largest region of class A into class B provided that the class A region touched a class B # region converted_single_grain_mask_tensor = Grains.convert_classes_to_nearby_classes( grain_mask_tensor=single_grain_mask_tensor, classes_to_convert=nearby_conversion_classes_to_convert, class_touching_threshold=class_touching_threshold, ) # Remove all but largest region in specific classes largest_only_single_grain_mask_tensor = Grains.keep_largest_labelled_region_classes( single_grain_mask_tensor=converted_single_grain_mask_tensor, keep_largest_labelled_regions_classes=keep_largest_labelled_regions_classes, ) # Vet number of connection points between regions in specific classes if not Grains.vet_class_connection_points( grain_mask_tensor=largest_only_single_grain_mask_tensor, class_connection_point_thresholds=class_connection_point_thresholds, ): continue # If passed all vetting steps, add to the dictionary of passed grain crops passed_graincrops[grain_number] = GrainCrop( image=graincrop.image, mask=largest_only_single_grain_mask_tensor, padding=graincrop.padding, bbox=graincrop.bbox, pixel_to_nm_scaling=graincrop.pixel_to_nm_scaling, filename=graincrop.filename, height_profiles=None, stats=None, ) return passed_graincrops
[docs] @staticmethod def merge_classes( grain_mask_tensor: npt.NDArray, classes_to_merge: list[tuple[int]] | None, ) -> npt.NDArray: """ Merge classes in a grain mask tensor and add them to the grain tensor. Parameters ---------- grain_mask_tensor : npt.NDArray 3-D Numpy array of the grain mask tensor. classes_to_merge : list | None List of tuples for classes to merge, can be any number of classes. Returns ------- npt.NDArray 3-D Numpy array of the grain mask tensor with classes merged. """ if classes_to_merge is None: return grain_mask_tensor # For each set of classes to merge: for classes in classes_to_merge: # Get the binary masks for all the classes class_masks = [grain_mask_tensor[:, :, class_index] for class_index in classes] # Combine the masks combined_mask = np.logical_or.reduce(class_masks) # Add new class to the grain tensor with the combined mask grain_mask_tensor = np.dstack([grain_mask_tensor, combined_mask]) return grain_mask_tensor.astype(bool)
[docs] @staticmethod def construct_full_mask_from_graincrops( graincrops: dict[int, GrainCrop], image_shape: tuple[int, int] ) -> npt.NDArray[np.bool_]: """ Construct a full mask tensor from the grain crops. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. image_shape : tuple[int, int, int] Shape of the original image. Returns ------- npt.NDArray[np.bool_] NxNxC Numpy array of the full mask tensor. """ # Calculate the number of classes from the first grain crop # Check if graincrops is empty if not graincrops: raise ValueError("No grain crops provided to construct the full mask tensor.") num_classes: int = list(graincrops.values())[0].mask.shape[2] full_mask_tensor: npt.NDArray[np.bool] = np.zeros((image_shape[0], image_shape[1], num_classes), dtype=np.bool_) for _grain_number, graincrop in graincrops.items(): bounding_box = graincrop.bbox crop_tensor = graincrop.mask # Add the crop to the full mask tensor without overriding anything else, for all classes for class_index in range(crop_tensor.shape[2]): full_mask_tensor[ bounding_box[0] : bounding_box[2], bounding_box[1] : bounding_box[3], class_index, ] += crop_tensor[:, :, class_index] # Update background class and return return Grains.update_background_class(full_mask_tensor)
[docs] @staticmethod def extract_grains_from_full_image_tensor( image: npt.NDArray[np.float32], full_mask_tensor: npt.NDArray[np.bool_], padding: int, pixel_to_nm_scaling: float, filename: str, ) -> dict[int, GrainCrop]: """ Extract grains from the full image mask tensor. Grains are detected using connected components across all classes in the full mask tensor. Parameters ---------- image : npt.NDArray[np.float32] 2-D Numpy array of the image. full_mask_tensor : npt.NDArray[np.bool_] 3-D NxNxC boolean numpy array of all the class masks for the image. padding : int Padding added to the bounding box of the grain before cropping. pixel_to_nm_scaling : float Pixel to nanometre scaling factor. filename : str Filename of the image. Returns ------- dict[int, GrainCrop] Dictionary of grain crops. """ # Flatten the mask tensor flat_mask = Grains.flatten_multi_class_tensor(full_mask_tensor) labelled_flat_full_mask = label(flat_mask) flat_regionprops_full_mask = regionprops(labelled_flat_full_mask) graincrops = {} for grain_number, flat_region in enumerate(flat_regionprops_full_mask): # Get a flattened binary mask for the whole grain and no other grains flattened_grain_binary_mask = labelled_flat_full_mask == flat_region.label # For each class, set all pixels to zero that are not in the current region grain_tensor_full_mask = np.zeros_like(full_mask_tensor).astype(bool) for class_index in range(1, full_mask_tensor.shape[2]): # Set all pixels to zero that are not in the current region's pixels by multiplying by a binary mask # for the whole flattened grain mask grain_tensor_full_mask[:, :, class_index] = ( flattened_grain_binary_mask * full_mask_tensor[:, :, class_index] ).astype(bool) # Crop the tensor # Get the bounding box for the region flat_bounding_box: tuple[int, int, int, int] = tuple(flat_region.bbox) # min_row, min_col, max_row, max_col # Pad the mask padded_flat_bounding_box = pad_bounding_box( crop_min_row=flat_bounding_box[0], crop_min_col=flat_bounding_box[1], crop_max_row=flat_bounding_box[2], crop_max_col=flat_bounding_box[3], image_shape=(full_mask_tensor.shape[0], full_mask_tensor.shape[1]), padding=padding, ) # Make the mask square square_flat_bounding_box = make_bounding_box_square( crop_min_row=padded_flat_bounding_box[0], crop_min_col=padded_flat_bounding_box[1], crop_max_row=padded_flat_bounding_box[2], crop_max_col=padded_flat_bounding_box[3], image_shape=(full_mask_tensor.shape[0], full_mask_tensor.shape[1]), ) assert ( square_flat_bounding_box[0] - square_flat_bounding_box[2] == square_flat_bounding_box[1] - square_flat_bounding_box[3] ) # Grab image and mask for the cropped region grain_cropped_image = image[ square_flat_bounding_box[0] : square_flat_bounding_box[2], square_flat_bounding_box[1] : square_flat_bounding_box[3], ] grain_cropped_tensor = grain_tensor_full_mask[ square_flat_bounding_box[0] : square_flat_bounding_box[2], square_flat_bounding_box[1] : square_flat_bounding_box[3], :, ] # Update background class to reflect the removal of any non-connected grains grain_cropped_tensor = Grains.update_background_class(grain_mask_tensor=grain_cropped_tensor) assert grain_cropped_image.shape[0] == grain_cropped_image.shape[1] assert grain_cropped_tensor.shape[0] == grain_cropped_tensor.shape[1] # Check that the bounding box is square bounding_box_shape = ( square_flat_bounding_box[2] - square_flat_bounding_box[0], square_flat_bounding_box[3] - square_flat_bounding_box[1], ) assert bounding_box_shape[0] == bounding_box_shape[1] # Check bounding box shape is same as image shape and first two dimensions of tensor assert bounding_box_shape == grain_cropped_image.shape assert bounding_box_shape == (grain_cropped_tensor.shape[0], grain_cropped_tensor.shape[1]) graincrops[grain_number] = GrainCrop( image=grain_cropped_image, mask=grain_cropped_tensor, padding=padding, bbox=square_flat_bounding_box, pixel_to_nm_scaling=pixel_to_nm_scaling, filename=filename, height_profiles=None, stats=None, ) return graincrops
[docs] @staticmethod def graincrops_remove_objects_too_small_to_process( graincrops: dict[int, GrainCrop], min_object_size: int, min_object_bbox_size: int, ) -> dict[int, GrainCrop]: """ Remove objects that are too small to process from each class of the grain crops. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. min_object_size : int Minimum object size to keep (pixels). min_object_bbox_size : int Minimum object bounding box size to keep (pixels^2). Returns ------- dict[int, GrainCrop] Dictionary of grain crops with objects too small to process removed. """ for _grain_number, graincrop in graincrops.items(): # Iterate over the classes for class_index in range(1, graincrop.mask.shape[2]): # Get the binary mask for the class class_mask = graincrop.mask[:, :, class_index] # Label the regions labelled_regions = Grains.label_regions(class_mask) region_properties = Grains.get_region_properties(labelled_regions) # Iterate over the regions for region in region_properties: # Get the region mask region_mask = labelled_regions == region.label # Check the region size if ( region.area < min_object_size or (region.bbox[2] - region.bbox[0]) < min_object_bbox_size or (region.bbox[3] - region.bbox[1]) < min_object_bbox_size ): # Remove the region from the class graincrop.mask[:, :, class_index] = np.where( region_mask, 0, graincrop.mask[:, :, class_index], ) # Update the background class graincrop.mask = Grains.update_background_class(graincrop.mask) return graincrops
[docs] @staticmethod def graincrops_merge_classes( graincrops: dict[int, GrainCrop], classes_to_merge: list[tuple[int]] | None, ) -> dict[int, GrainCrop]: """ Merge classes in the grain crops. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. classes_to_merge : list | None List of tuples for classes to merge, can be any number of classes. Returns ------- dict[int, GrainCrop] Dictionary of grain crops with classes merged. """ if classes_to_merge is None: return graincrops for _grain_number, graincrop in graincrops.items(): graincrop.mask = Grains.merge_classes( grain_mask_tensor=graincrop.mask, classes_to_merge=classes_to_merge, ) return graincrops
[docs] @staticmethod def graincrops_update_background_class( graincrops: dict[int, GrainCrop], ) -> dict[int, GrainCrop]: """ Update the background class in the grain crops. Parameters ---------- graincrops : dict[int, GrainCrop] Dictionary of grain crops. Returns ------- dict[int, GrainCrop] Dictionary of grain crops with updated background class. """ for _grain_number, graincrop in graincrops.items(): graincrop.mask = Grains.update_background_class(graincrop.mask) return graincrops
[docs] @staticmethod def remove_disconnected_grains( original_grain_tensor: npt.NDArray, predicted_grain_tensor: npt.NDArray, ): """ Remove grains that are not connected to the original grains. Parameters ---------- original_grain_tensor : npt.NDArray 3-D Numpy array of the original grain tensor. predicted_grain_tensor : npt.NDArray 3-D Numpy array of the predicted grain tensor. Returns ------- npt.NDArray 3-D Numpy array of the predicted grain tensor with grains not connected to the original grains removed. """ # flatten the masks and compare connected components original_mask_flattened = Grains.flatten_multi_class_tensor(original_grain_tensor) predicted_mask_flattened = Grains.flatten_multi_class_tensor(predicted_grain_tensor) # Get the connected components of the original grain mask original_mask_flattened_labelled = label(original_mask_flattened) predicted_mask_flattened_labelled = label(predicted_mask_flattened) # for each region of the predicted mask, check if it overlaps with any of the original mask regions # (the original mask is expected to only have one region, but just in case future edits don't follow # this assumption, I check all regions) predicted_mask_regions = regionprops(predicted_mask_flattened_labelled) original_mask_regions = regionprops(original_mask_flattened_labelled) # if the predicted mask region doesn't overlap with any of the original mask regions, set it to 0 for predicted_mask_region in predicted_mask_regions: predicted_mask_region_mask = predicted_mask_flattened_labelled == predicted_mask_region.label overlap = False for original_mask_region in original_mask_regions: original_mask_region_mask = original_mask_flattened_labelled == original_mask_region.label if np.any(predicted_mask_region_mask & original_mask_region_mask): # a region in the flattened original mask shares a pixel with the flattened predicted mask overlap = True break if not overlap: # zero the region in all channels of the predicted mask for channel in range(1, predicted_grain_tensor.shape[-1]): predicted_grain_tensor[predicted_mask_region_mask, channel] = 0 return predicted_grain_tensor